Synthesis and Determination of the Kinetic Parameters for Non-Isothermal Decomposition of Complexes Ln(thd)3phen


Article Preview

In this work the kinetics of the thermal decomposition of two ß-diketone lanthanide complexes of the general formula Ln(thd)3phen (where Ln = Nd+3 or Tm+3, thd = 2,2,6,6- tetramethyl-3,5-heptanodione and phen = 1,10-phenantroline) has been studied. The powders were characterized by several techniques. Thermal decomposition of the complexes was studied by non-isothermal thermogravimetry techniques. The kinetic model that best describes the process of the thermal decomposition of the complexes it was determined through the method proposed by Coats-Redfern. The average values the activation energy obtained were 136 and 114 kJ.mol-1 for the complexes Nd(thd)3phen and Tm(thd)3phen, respectively. The kinetic models that best described the thermal decomposition reaction the both complexes were R2. The model R2 indicating that the mechanism is controlled by phase-boundary reaction (cylindrical symmetry) and is defined by the function g(α) = 2[1-(1-a)1/2], indicating a mean reaction order. The values of activation energy suggests the following decreasing order of stability: Nd(thd)3phen > Tm(thd)3phen.



Materials Science Forum (Volumes 530-531)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




W. S. Lopes et al., "Synthesis and Determination of the Kinetic Parameters for Non-Isothermal Decomposition of Complexes Ln(thd)3phen", Materials Science Forum, Vols. 530-531, pp. 506-512, 2006

Online since:

November 2006




[1] T. Hatakeyama; F.X. Quinn. Thermal Analysis: Fundamentals and applications to polymer science. New York, Jonh Wiley and Sons, (1994).

[2] S. Vyazovkin, C.A. Wight, Thermochim. Acta 340-341 (1999) 53-68.

[3] P. Mu, R. Wang and L. Zhao, Thermochim. Acta 296 (1997) 129-134.

[4] J. J. Pysiak, Y. A. Al-badwi, J. Therm. Anal. Cal., Vol. 76 (2004) 521.

[5] T. Vlase, G. Vlase, M. Doca, N. Doca, J. Therm. Anal. Cal., Vol. 72 (2003) 597.

DOI: 10.1023/a:1024537902405

[6] K. S. Khairou, J. Therm. Anal. Cal., Vol. 69 (2002) 583.

[7] J. M. Lehn, Angew Chem. Int. Ed. Engl. 29 (1990), 1304.

[8] C.S.M. Morais; W.S. Lopes; A.G. Souza; P.A. Santa-Cruz. Journal of metastable and nanocrystalline materials, 20-21 (2004) 462-467.

[9] C.S.M. Morais; A.G. Souza; P.A. Santa-Cruz. P.A. Journal of Alloys and Compounds, 344 (2002) 101-104.

[10] S. T. Frey, M. L. Gong, W. De W. Horrocks, Inorg. Chem. 33 (1994), 3229-3234.

[11] W.S. Lopes; C.S.M. Morais; A.G. Souza; V.D. Leite. Journal of Thermal Analysis and Calorimetry, 79 (2005) 343-347.

[12] N. Sabbatini, M. Guardigli, J. M. Lenh, Coord. Chem. Rev. 123 (1993) 201.

[13] N. Sebbtini, M. Guardigli, I. Manet, R. Ungaro, A. Casnati, R. Ziessel, G. Ulrich, J. M. Lenh, Pure & Appl. Chem., 67 (1995) 137.

[14] J. C. Bünzli, G. R. Choppin, Lanthanide probe In life, Medical and Environmental Science, Elsevier, Amsterdam, (1989).

[15] C. M. Donegá, S. A. Junior and G. F. de Sá, J. Chem. Soc., Chem. Comm., 1199 (1996).

[16] H. J. Batista, A. V. M. de Andrade, R. L. Longo, A. M. Simas, G. F. de Sá and L. C. Thompson, Inorg. Chem. 37 (1998), 3542-3547.

[17] R. Q. Albuquerque, G. B. Rocha, O. L: Malta and P. Porcher, Chem. Phys. Letters 331 (2000) 519-525.

[18] A.W. Coats, J.P. Redfern, Nature 201 (1964) 68.

[19] K. Nakamoto. Infrared spectra of inorganic and coordination compounds, Wiley Interscience, New York, (1970).

[20] D.L. Pavia; G.M. Lampman; G.S. Kriz. Introduction to spectroscopy: a guide for students of organic chemistry. Second Edition, Harcourt Brace College Publishers, New York, (1996).

Fetching data from Crossref.
This may take some time to load.