Biomimetic Coatings on Ti-Based Alloys Obtained by Powder Metallurgy for Biomedical Applications


Article Preview

Comparing to hydroxyapatite (HA), which forms a strong chemical bond with the bony tissues, metallic materials are not able to bond with bone. For this reason, a great variety of complex coating methods, such as pulse-laser deposition, ion-beam assisted deposition and plasma-spray has been used to form a HA layer onto metallic surfaces. This study evaluated the performance of the biomimetic technique on apatite-based coating formation on two Tialloys. Ti-13Nb-13Zr and Ti-35Nb-7Zr-5Ta were obtained via powder metallurgy. The Tibased alloys were biomimetically coated using a technique which was modified from the conventional ones using a sodium silicate solution as the nucleant agent. Both alloys presented similar behavior in the evaluated conditions which means the formation of a homogeneous and well defined HA coating. These results show that these new non-toxic Tialloys seem to be very promising for biomedical applications.



Materials Science Forum (Volumes 530-531)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




E.C.S. Rigo et al., "Biomimetic Coatings on Ti-Based Alloys Obtained by Powder Metallurgy for Biomedical Applications", Materials Science Forum, Vols. 530-531, pp. 599-604, 2006

Online since:

November 2006




[1] Y. Okazaki, S. Rao, Y. Ito, T. Tateishi. Biomaterials 19 (1998), 1197.

[2] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme. Biomaterials 25 (2004), 5705.

[3] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro. Mat. Sci. Eng. A 243 (1998), 244.

[4] G. Berthon. Coord. Chem. Rev 228 (2002), 319.

[5] J. A. Davidson, A. K. Mishra, P. Kovacs, R. A. Poggie. Bio-Medical Mat. Eng. 4 (1994), 231.

[6] H. Matsuno, A. Yokohama, F. Watari, M. Uo, T. Kawasaki. Biomaterials 22 (2001), 1253.

[7] M. Geetha, U.K. Mudali, A.K. Gogia, R. Asokamani, B. Raj. Corrosion Sci 46 (2004), 877.

[8] B.J. Moyen, P.J. Lahey Jr., E.H. Weinberg, W.H. Harris. J Bone Joint Surg Am 60 (1978), 940.

[9] E.B. Taddei, V.A.R. Henriques, C.R.M. Silva, C.A.A. Cairo. Mat. Sci. Eng. C 24 (2004), 683.

[10] J.E. Lemons. J Oral Implantol. 30 (2004), 318.

[11] R.Z. LeGeros. Clin Orthop Relat Res. 395 (2002), 81.

[12] M.G. Kutty, S. Bhaduri, S.B. Bhaduri. J. Mater. Sci.: Mater. Med. 15 (2004), 145.

[13] T. Kokubo, F. Miyaji, H.M. Kim, T. Nakamura. J. Am. Ceram. Soc. 79 (1996), 1127.

[14] F. Barrère, M.M.E. Snel, C.A. Van Blitterswijk, K De Groot, P. Layrolle. Biomaterials 25 (2004), 2901.


[15] L. Jonásová, F.A. Müller, A. Helebrant, J. Strnad, P. Greil. Biomaterials 25 (2004), 1187.

[16] A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta, F. Segatti, L. Sturba. Biomaterials 26 (2005), 4085.


[17] E.C.S. Rigo, A.O. Boschi, M. Yoshimoto, S. Allegrini Jr., B. Konig Jr., M.J. Carbonari. Mat. Sci. Eng. C 24, (2004), 647.

[18] F. Barrère; P. Layrolle; C.A. Van Blitterswijk; K. De Groot. Bone 25 (1999), 107S.

[19] A. Stoch; W. Jastrzebski; A. Brozek; B. Trybalska; M. Cichocinska; E. Szarawara. J. Molecular Structure 511-512 (1999), 287.


[20] T. Kokubo; H.M. Kim; M. Kawashita. Biomaterials 24 (2003), 2161.

[21] T. Kokubo; H.M. Kim; F. Miyaji; H. Takadama and T. Miyazaki. Composite: Part A: Applied Science and Manufacturing 30 (1999), 405.

[22] L.L. Hench. Ceramic Glasses and Glasses Ceramics in Biomaterials Science: An Introductory Text, B D Ratner and A S Hoffman, Eds., Academic Press, Orlando, (1991).

Fetching data from Crossref.
This may take some time to load.