Electrophoretic Deposition of Ni Nano-Particles for Self-Repairing of Heat Exchanger Tubes

Abstract:

Article Preview

The electrophoretic deposition process of Ni nano-particles in organic suspension was employed for self-repairing of heat exchanger tubes. For this purpose, Ni nano-particles prepared by levitation-gas condensation were dispersed into the solution of ethanol with the addition of dispersant. The pitted Ni alloy specimen was prepared by applying a potential of 0.9 V (vs. Ag/AgCl) in aqueous 0.1 M NaCl solution. For electrophoretic deposition of Ni nano-particles on the specimen, a constant electric field of 100 V cm-1 was applied to the specimen for 180 s in Nidispersed solution. It was found that as the electrophoretic deposition time increased, the size of the pit remarkably decreased due to the agglomeration of Ni nano-particles at the pit with a higher current value rather than the outer surfaces of the specimen with a lower current value. Moreover, the current density increased with electrophoretic deposition time and reached a constant value. From the above, it is concluded that as the electrophoretic deposition proceeds, the pit becomes smaller in size, and hence the nano-particles more extensively aggregate at the pit by lyosphere distortion.

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Edited by:

Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun and Yong-Seog Kim

Pages:

1453-1456

DOI:

10.4028/www.scientific.net/MSF.534-536.1453

Citation:

G. J. Lee et al., "Electrophoretic Deposition of Ni Nano-Particles for Self-Repairing of Heat Exchanger Tubes", Materials Science Forum, Vols. 534-536, pp. 1453-1456, 2007

Online since:

January 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.