Fabrication of Porous Structure of BCP Sintered Bodies Using Microwave Assisted Synthesized HAp Nano Powder


Article Preview

Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having 150-180 μm were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of Ca2+ ion was observed in the sample sintered at 1000°C.



Materials Science Forum (Volumes 534-536)

Edited by:

Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun and Yong-Seog Kim




M. H. Youn et al., "Fabrication of Porous Structure of BCP Sintered Bodies Using Microwave Assisted Synthesized HAp Nano Powder ", Materials Science Forum, Vols. 534-536, pp. 49-52, 2007

Online since:

January 2007




[1] K. D. Groot: Biomaterials, Vol. 1 (1980), p.47.

[2] D.C. Moore, M.W. Chapman and D. Manske, J. Orthop. Res., Vol. 5, (1987), p.356.

[3] W. Suchanek and M. Yoshimera: J. Mater. Res., Vol. 13 (1998), p.94.

[4] G. Daculsi, J. M. Bouler and R. Z. LeGeros: Int. Rev. Cytol., Vol. 172 (1997), p.129.

[5] W. Bonfield, S. Best, A. Krajewski and A. Ravaglioli: Biomaterials, Vol. 8 (1995), p.3.

[6] H. Aoki: Science and Medical Application of Hydroxiapatite, Japanese Association of Apatite Science, Tokyo, Japan, (1991).

[7] W. Suchanek and M. yosimura: J. Mater. Res., Vol. 13 (1998), p.94.

[8] J.K. Han, H.Y. Song, F. Saito and B.T. Lee: Mater. Chem. Phy. (2005), in press.

[9] J. Warner, B. L. Krcmar, W. Friess and P. Griel: Biomaterials, Vol. 23 (2002), p.4285.

[10] O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet and G. Daculsi: Biomaterials, Vol. 19 (1998), p.133.

[11] L. L. Hench, R. J. Splinter, W.C. Allen, and T.K. Greenlee: J. Biomed. Mater. Res., Vol. 2 (1972), p.117.

[12] T. Kokubo: Biomaterials, Vol. 12 (1991), p.155.

[13] T.M. Gregory, E.C. Moreno and W.E. Brown: J. Res. Nat. Bur. Stand., Vol. 74 (1968), p.773.

[14] R. W. Bucholz, A. Carlton, R. E. Holmes: Orthop. Clin. North. Am., Vol. 18 (1987), p.323.

[15] T. L. Arinzeh, T. Tran, J. Mcalary and G. Dalculsi: Biomaterials, Vol. 26 (2005), p.3631.