Organic-Inorganic Nano Composite Membranes of Sulfonated Poly(ether Sulfone-Ketone) Copolymer and SiO2 for Fuel Cell Application


Article Preview

Novel bisphenol-based wholly aromatic sulfonated poly(ether sulfone-ketone) copolymer and organic-inorganic composite membranes were prepared for operation 80°C in polymer electrolyte membrane fuel cell (PEMFCs). The copolymer were synthesized by direct aromatic nucleophilic substitution polycondensation of 4,4-difluorobenzophenone, 2,2’-disodiumsulfonyl- 4,4’-fluorophenylsulfone (40mole% of bisphenol A) and bisphenol A. Polymerization proceeded quantitatively to high molecular weight in N-methyl-2-pyrrolidinone at 180°C. Organic-inorganic composite membranes were obtained by mixing organic polymers with hydrophilic SiO2 obtained by sol-gel process. The polymer and a series of composite membranes were studied by FT-IR, 1HNMR, differential scanning calorimetry (DSC) and thermal stability. The proton conductivity as a function of temperature decreased as SiO2 content increased, but methanol permeability decreased. The nano composite membranes were found to poses all requisite properties; Ion exchange capacity (1.2meq./g), glass transition temperatures (164-183), and low affinity towards methanol (4.63-1.08x10-7 cm2/S).



Materials Science Forum (Volumes 534-536)

Edited by:

Duk Yong Yoon, Suk-Joong L. Kang, Kwang Yong Eun and Yong-Seog Kim




D. H. Lee et al., "Organic-Inorganic Nano Composite Membranes of Sulfonated Poly(ether Sulfone-Ketone) Copolymer and SiO2 for Fuel Cell Application", Materials Science Forum, Vols. 534-536, pp. 97-100, 2007

Online since:

January 2007




[1] Z. Ahmed, M. I. Sarwar and J. E. Mark: J. Mater. Chem., Vol. 7, (1997), p.259.

[2] Z. Wen, H. D. Jian. Y. Q. H. Kun and W. Yen: J. Polym. Sci. Part-A: Polym Chem., Vol. 36, (1998), p.1607.

[3] K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger and A. B. Bocarsly: J. Electrochem. Soc., Vol. 149, (2002), p.256.

[4] C.H. Wirguin: J. Membr. Sci., Vol. 1, (1996), p.120.

[5] F. Wang, M. Hickner, Y. S. Kim, J. E. McGrath: J. Membr. Sci., Vol. 197, (2002), p.231.

[6] M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada. A: Macromolecules, Vol. 30, (1997), p.6333.

[7] M. Nogami, R. Nagao and Wong: J. Phy. Chem. B, Vol. 102, (1998), p.5772.

[8] D. S. Kim, D. B. Park, J. W. Rhim and Y. M. Lee: J. Membr. Sci., Vol. 240, (2004), p.37.

[9] Y. M. Kim, S. H. Choi, H. C. Lee, M. Z. Hong, K. Kim and H. I Lee: Electrochimica, Vol. 49, (2004), p.4797.

[10] S.M. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver and S. Kaliaguine: J. Membr. Sci., Vol. 173, (2000), p.17.