Temperature Dependence of Barkhausen Noise Parameters in Carbon Steel


Article Preview

Temperature dependence of different parameters (the position of the inflexion point and the saturation value on the root main square, RMS, values versus exciting field curves) of the Barkhausen noise is measured in structural steel (S 235 JRG1). It is shown that while the position of the inflexion point remained constant, the RMS value at the inflexion point and saturation value increased with the increasing temperature, T. Most interestingly the field required for saturation decreased with decreasing temperature and had a breakpoint at about 200K. Breakpoints at the same temperature on the critical exponents versus temperature functions (i.e. on the β(T) and α(T) curves, where β and α are the exponents of the probability distributions of peak heights and durations, respectively) were also observed. This temperature can be identified as the ductile-brittle transition temperature.



Materials Science Forum (Volumes 537-538)

Edited by:

J. Gyulai and P.J. Szabó




L. Harasztosi et al., "Temperature Dependence of Barkhausen Noise Parameters in Carbon Steel", Materials Science Forum, Vols. 537-538, pp. 371-380, 2007

Online since:

February 2007




[1] H. G. Barkhausen, Phys Z. 20, 401 (1919).

[2] G. Posgay, L. Imre, Z. Marek and N. Takacs, 4th Int. Conf. On Bark. Noise and MicMag. Testing (2003).

[3] N. Takács, G. Posgay, L. Harasztosi and D.L. Beke J. of Mat. Sci. 37 3599 (2002).

[4] I. Mészáros, Mat. Sci. For. Vols. 473-474 (2005) 231.

[5] I. Mészáros, Physica B 372, (2006), 181.

[6] P. J. Cote and L. V. Meisel, Phys. Rev. Lett. 67, 1334 (1991).

[7] D. Spasojevic, S. Bukvic, S. Milosevic and H. E. Stanley, Phys. Rev. E 54, 2531 (1996).

[8] P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

[9] experimental data B. Gutenberg and C. F. Richter Ann. Geophys. 9, 1 (1956) analysis Z. Olami, H J. S. Feder and K. Christensen, Phys. Rev. Lett. 68, 1244 (1992).

[10] E. Vives, J. Ortin, I. Rafols, R. Perez-Magrane and A. Planes, Phys. Rev. Lett. 72, 1694 (1994).

DOI: 10.1103/physrevlett.72.1694

[11] Z. Balogh, L. Daróczi, L. Harasztosi, D.L. Beke, T.A. Lograsso, D.L. Schlagel, Mater. Trans. 47(3), (2006), 631.

[12] F. Kun, Gy. B. Lenkey, N. Takács and D. L. Beke Phys. Rev. Lett. 93, 227204 (2004).

[13] R. N. Kostoff, M. F. Shlessinger and G. Malpohl, Frac-Comp. Geom. Patt. and Sca. in Nat. and Soc. 12 (1), 1 (2004).

[14] G. Durin and S. Zapperi, Phys. Rev. Lett. 84, 4705 (2000).

[15] E. Puppin, Phys. Rev. Lett. 84, 5415 (2000).

[16] L. Daróczi, Z. Balogh, Z. Erdélyi and D.L. Beke Acta. Univ. Deb. Phys. Chim. XXXVIIIXXXIX, 91 (2005).

[17] Z. Balogh, L. Daróczi, Z. Erdélyi, S. Szabó, R. Juhász and D.L. Beke to be puslished Mat. Sci. For. Vol.

Fetching data from Crossref.
This may take some time to load.