Prediction of Fullerene Stability Using Topological Descriptors


Article Preview

In recent years, several attempts have been made to characterize the geometric structure of fullerenes by means of topological shape factors in order to predict their physical properties and stability. In this paper, we present a simple method to estimate the stability of fullerenes on the basis of quantitative topological criteria. This approach is based on the concept of the generalized combinatorial curvatures defined on the set of simple graphs embedded on a closed surface without boundary (sphere, torus, projective plane, Klein bottle). It is shown that starting with the computed generalized combinatorial curvatures several novel topological indices can be generated. From computations performed on a set of C40 and C60 fullerenes, we concluded that the four topological shape factors tested (Λ(-1), (-1), Λ(1) and (1)) could be successfully used to preselect the most stable fullerene isomers.



Materials Science Forum (Volumes 537-538)

Edited by:

J. Gyulai and P.J. Szabó




T. Réti and E. Bitay, "Prediction of Fullerene Stability Using Topological Descriptors", Materials Science Forum, Vols. 537-538, pp. 439-448, 2007

Online since:

February 2007




[1] P. W. Fowler and D. E. Manolopoulos: An Atlas of Fullerenes, Calendron Press, Oxford, (1995).

[2] S.J. Austin, P.W. Fowler et al.: Structural Motifs and the Stability of Fullerenes, J. Phys. Chem. Vol. 99 (1995) pp.8076-8081.

[3] S.J. Austin, P.W. Fowler et al.: The Stone-Wales map for C60, Chemical Physics Letters, Vol. 235 (1995) pp.146-151.

[4] P.W. Fowler an F. Zerbetto: Charging and equilibrium of fullerene isomers, Chemical Physics Letters, Vol. 243 (1995) pp.36-41.

DOI: 10.1016/0009-2614(95)00849-y

[5] E.E.B. Campbell, P.W. Fowler et al.: Decreasing cost of pentagon adjacency for larger fullerenes, Chemical Physics Letters, Vol. 250 (1996) pp.544-548.

DOI: 10.1016/0009-2614(96)00055-3

[6] E. Albertazzi, C. Domene et al: Pentagon adjacency as a determinant of fullerene stability, Phys. Chem. Chem. Phys., Vol. 1, (1999) pp.2913-2918.

DOI: 10.1039/a901600g

[7] P.W. Fowler, T. Heine et al: C36 a hexavalent building block for fullerene compounds and solids, Chemical Physics Letters, Vol. 300 (1999) pp.369-378, ?FONTOS cikk.

DOI: 10.1016/s0009-2614(98)01385-2

[8] P.R.C. Kent, M.D. Towler et al: Carbon clusters near the crossover to fullerene stability, Physical Review B, Vol. 62 (2000) pp.15394-15397.

DOI: 10.1103/physrevb.62.15394

[9] P. W Fowler and T. Heine: Stabilization of pentagon adjacencies in the lower fullerenes by functionalisation, J. Chem. Soc., Perkin Trans. Vol 2 (2001) pp.487-490.

DOI: 10.1039/b009370j

[10] P. W. Fowler: Resistance Distances in Fullerene Graphs, Croat. Chem. Acta, Vol. 75 (2002) pp.401-408.

[11] F. Torrens: Computing the Permanent of the Adjacency Matrix for Fullerenes, Internet Electronic Journal of Molecular Design, Vol. 1 (2002) pp.351-359.

[12] S. Fajtlowitz and C.E. Larson: Graph-theoretical independence as a predictor of fullerene stability, Chemical Physics Letters, Vol. 377 (2003) pp.485-490.

DOI: 10.1016/s0009-2614(03)01133-3

[13] P. W. Fowler: Complexity, spanning trees and relative energies, in fullerene isomers, MATCH Commun. Math. Comput. Chem. Vol. 48 (2003) pp.87-96.

[14] T. Heine: Die Berechnung von Struktur, Energetik und kernmagnetischen Abschirmungen von Fullerenen und ihren Derivaten, Dissertation, Technischen Universitat Dresden, (1999).

[15] M. Deza, P.W. Fowler, A. Rassat and K.M. Rogers: Fullerenes as a Tiling of Surfaces, J. Chem. Phys. Vol. 40, (2000) pp.550-558.

[16] A.T. White and L.W. Beineke: Topological Graph Theory, in Selected Topics in Graph Theory, Ed. by L.W. Beineke and R.J. Wilson, Academic Press, London, (1977) pp.15-49.

DOI: 10.1017/cbo9781139087223.002

[17] I. Laszlo and A. Rassat: Toroidal and Spherical Fullerene-like Molecules with Only Pentagonal and Heptagonal Faces, Int. J. of Quantum Chemistry, Vol. 84 (2001) pp.136-139.

DOI: 10.1002/qua.1315

[18] Y. Higuchi: Combinatorial Curvature for Planar Graphs, J. Graph Theory, Vol. 38 (2001) pp.220-229.

DOI: 10.1002/jgt.10004

[19] O. Baues and N. Peyerimhoff: Curvature and Geometry of Tesselating Plane Graphs, Discrete Comput. Geom., Vol. 25 (2001) pp.141-159.

DOI: 10.1007/s004540010076

[20] K. Kawarabayashi, M. Plummer and A. Sato: On two equimatchable graph classes, Discrete Mathematics, Vol. 266 (2003) pp.263-274.

DOI: 10.1016/s0012-365x(02)00813-0

[21] Liang Sun and Xingxing Yu: Positively curved cubic plane graphs are finite, J. Graph Theory, Vol. 47 (2004) pp.241-274.

DOI: 10.1002/jgt.20026

[22] M. DeVos and B. Mohar: An analogue of the Descartes-Euler formula for infinite graphs and Higuchi's conjecture, submitted in (2004).

[23] T. Reti, E. Bitay and Zs. Kosztolányi: On the Polyhedral Graphs with Positive Combinatorial Curvature, Acta Polytechnica Hungarica, Vol. 2 (2005) pp.19-37.

[24] D. E. Manolopoulos and P. W. Fowler: Molecular graphs, point groups, and fullerenes, J. Chem. Phys. Vol. 96, (1992) pp.7603-7614.

[25] T. Reti and K. Böröczky: Topological Characterization of Cellular Structures, Acta Polytechnica Hungarica, Vol. 1 (2004) pp.59-85.

[26] T. Reti and I. Zsoldos: A Possible Extension of the Aboav-Weaire Law, Materials Science Forum, 2005, Vol. 473-474, pp.389-398.

DOI: 10.4028/

[27] A. T. Balaban, X. Liu, D.J. Klein, D. Babics, T.G. Schmalz, W.A. Seitz and M. Randic: Graph Invariants for Fullerenes, J. Chem. Inf. Comput. Sci., Vol. 35, (1995) pp.396-404.

DOI: 10.1021/ci970483z

Fetching data from Crossref.
This may take some time to load.