[1]
P. W. Fowler and D. E. Manolopoulos: An Atlas of Fullerenes, Calendron Press, Oxford, (1995).

[2]
S.J. Austin, P.W. Fowler et al.: Structural Motifs and the Stability of Fullerenes, J. Phys. Chem. Vol. 99 (1995) pp.8076-8081.

[3]
S.J. Austin, P.W. Fowler et al.: The Stone-Wales map for C60, Chemical Physics Letters, Vol. 235 (1995) pp.146-151.

[4]
P.W. Fowler an F. Zerbetto: Charging and equilibrium of fullerene isomers, Chemical Physics Letters, Vol. 243 (1995) pp.36-41.

DOI: 10.1016/0009-2614(95)00849-y
[5]
E.E.B. Campbell, P.W. Fowler et al.: Decreasing cost of pentagon adjacency for larger fullerenes, Chemical Physics Letters, Vol. 250 (1996) pp.544-548.

DOI: 10.1016/0009-2614(96)00055-3
[6]
E. Albertazzi, C. Domene et al: Pentagon adjacency as a determinant of fullerene stability, Phys. Chem. Chem. Phys., Vol. 1, (1999) pp.2913-2918.

DOI: 10.1039/a901600g
[7]
P.W. Fowler, T. Heine et al: C36 a hexavalent building block for fullerene compounds and solids, Chemical Physics Letters, Vol. 300 (1999) pp.369-378, ?FONTOS cikk.

DOI: 10.1016/s0009-2614(98)01385-2
[8]
P.R.C. Kent, M.D. Towler et al: Carbon clusters near the crossover to fullerene stability, Physical Review B, Vol. 62 (2000) pp.15394-15397.

DOI: 10.1103/physrevb.62.15394
[9]
P. W Fowler and T. Heine: Stabilization of pentagon adjacencies in the lower fullerenes by functionalisation, J. Chem. Soc., Perkin Trans. Vol 2 (2001) pp.487-490.

DOI: 10.1039/b009370j
[10]
P. W. Fowler: Resistance Distances in Fullerene Graphs, Croat. Chem. Acta, Vol. 75 (2002) pp.401-408.

[11]
F. Torrens: Computing the Permanent of the Adjacency Matrix for Fullerenes, Internet Electronic Journal of Molecular Design, Vol. 1 (2002) pp.351-359.

[12]
S. Fajtlowitz and C.E. Larson: Graph-theoretical independence as a predictor of fullerene stability, Chemical Physics Letters, Vol. 377 (2003) pp.485-490.

DOI: 10.1016/s0009-2614(03)01133-3
[13]
P. W. Fowler: Complexity, spanning trees and relative energies, in fullerene isomers, MATCH Commun. Math. Comput. Chem. Vol. 48 (2003) pp.87-96.

[14]
T. Heine: Die Berechnung von Struktur, Energetik und kernmagnetischen Abschirmungen von Fullerenen und ihren Derivaten, Dissertation, Technischen Universitat Dresden, (1999).

[15]
M. Deza, P.W. Fowler, A. Rassat and K.M. Rogers: Fullerenes as a Tiling of Surfaces, J. Chem. Phys. Vol. 40, (2000) pp.550-558.

[16]
A.T. White and L.W. Beineke: Topological Graph Theory, in Selected Topics in Graph Theory, Ed. by L.W. Beineke and R.J. Wilson, Academic Press, London, (1977) pp.15-49.

DOI: 10.1017/cbo9781139087223.002
[17]
I. Laszlo and A. Rassat: Toroidal and Spherical Fullerene-like Molecules with Only Pentagonal and Heptagonal Faces, Int. J. of Quantum Chemistry, Vol. 84 (2001) pp.136-139.

DOI: 10.1002/qua.1315
[18]
Y. Higuchi: Combinatorial Curvature for Planar Graphs, J. Graph Theory, Vol. 38 (2001) pp.220-229.

DOI: 10.1002/jgt.10004
[19]
O. Baues and N. Peyerimhoff: Curvature and Geometry of Tesselating Plane Graphs, Discrete Comput. Geom., Vol. 25 (2001) pp.141-159.

DOI: 10.1007/s004540010076
[20]
K. Kawarabayashi, M. Plummer and A. Sato: On two equimatchable graph classes, Discrete Mathematics, Vol. 266 (2003) pp.263-274.

DOI: 10.1016/s0012-365x(02)00813-0
[21]
Liang Sun and Xingxing Yu: Positively curved cubic plane graphs are finite, J. Graph Theory, Vol. 47 (2004) pp.241-274.

DOI: 10.1002/jgt.20026
[22]
M. DeVos and B. Mohar: An analogue of the Descartes-Euler formula for infinite graphs and Higuchi's conjecture, submitted in (2004).

[23]
T. Reti, E. Bitay and Zs. Kosztolányi: On the Polyhedral Graphs with Positive Combinatorial Curvature, Acta Polytechnica Hungarica, Vol. 2 (2005) pp.19-37.

[24]
D. E. Manolopoulos and P. W. Fowler: Molecular graphs, point groups, and fullerenes, J. Chem. Phys. Vol. 96, (1992) pp.7603-7614.

[25]
T. Reti and K. Böröczky: Topological Characterization of Cellular Structures, Acta Polytechnica Hungarica, Vol. 1 (2004) pp.59-85.

[26]
T. Reti and I. Zsoldos: A Possible Extension of the Aboav-Weaire Law, Materials Science Forum, 2005, Vol. 473-474, pp.389-398.

DOI: 10.4028/www.scientific.net/msf.473-474.389
[27]
A. T. Balaban, X. Liu, D.J. Klein, D. Babics, T.G. Schmalz, W.A. Seitz and M. Randic: Graph Invariants for Fullerenes, J. Chem. Inf. Comput. Sci., Vol. 35, (1995) pp.396-404.

DOI: 10.1021/ci970483z