On the Topological Characterization of 3-D Polyhedral Microstrutures


Article Preview

To characterize topologically the polycrystalline microstructure of single-phase alloys computer simulations are performed on 3-dimensional cellular models. These infinite periodic cellular systems are constructed from a finite set of space filling convex polyhedra (grains). It is shown that the appropriately selected topological shape factors can be successfully used for the quantitative characterization of computer-simulated microstructures of various types.



Materials Science Forum (Volumes 537-538)

Edited by:

J. Gyulai and P.J. Szabó




T. Réti et al., "On the Topological Characterization of 3-D Polyhedral Microstrutures", Materials Science Forum, Vols. 537-538, pp. 563-570, 2007

Online since:

February 2007




[1] J. Ohser and F. Mücklich: Statistical Analysis of Microstructures in Materials Science. John Wiley and Sons, New York, (2000).

[2] A. Okabe, B. Boots, K. Sugihara and S.N. Chou: Spatial Tessellations Concepts and Applications to Voronoi diagrams, 2nd Ed., John Wiley and Sons, Chichester, 2000, pp.306-311.

[3] J. Chraponski, M. Malinski and J. Cwajna: Stereological parameters of model polycrystalline structures built from polyhedra of various shape and size. Acta Stereologica, Vol. 13, Part 3, (1994) pp.299-303.

[4] I. Saxl, P. Ponizil and K Sülleiova: Stereology and simulation of heterogeneous crystalline media, Int. J. of Materials and Product Technology, Vol. 18, (2003) pp.1-25.

DOI: https://doi.org/10.1504/ijmpt.2003.003583

[5] T. Aste and N. Rivier: Random cellular froth in spaces of any dimension and curvature, J. Phys. A: Math. Gen. Vol. 28, (1995) pp.1381-1398.

DOI: https://doi.org/10.1088/0305-4470/28/5/023

[6] T. Aste: Dinamical partitions of space in any dimension, J. Phys. A: Math. Gen. Vol. 31, (1998) pp.8577-8593.

DOI: https://doi.org/10.1088/0305-4470/31/43/003

[7] H.S.M. Coxeter: Regular Polytopes, Macmillen, New York, 1963, pp.72-73.

[8] L.C. Kinsey: Topology of Surfaces, Springer Verlag, New York, 1991, pp.217-219.

[9] T. Réti and K. Böröczky: Topological Characterization of Cellular Structures, Acta Polytechnica Hungarica, Vol. 1, (2004) pp.59-85.

[10] R. Williams: The Geometrical Foundation of Natural Structure: A Source Book of Design. New York, Dove, (1979).

[11] A. Roosz, Z. Gacsi and E. Fuchs: Isothermal formation of austenite in eutectoid plain carbon steels, Acta Metall., Vol. 31, (1983) pp.509-517.

DOI: https://doi.org/10.1016/0001-6160(83)90039-1

[12] D. Weaire and R. Phelan: A Counter-Example to Kelvin's Conjecture on Minimal Surfaces. Phil. Mag. Let., Vol. 69, (1994) pp.107-110.

[13] F.W. Smith: The structure of aggregates - a class of 20-faced space-filling polyhedra, Canad. J. Physics, Vol. 43, (1965) p.2052-(2055).

DOI: https://doi.org/10.1139/p65-198