Functionalization of Multi-Walled Carbon Nanotubes


Article Preview

In order to alter the physical/chemical characteristics of multi-walled carbon nanotubes (MWNTs) we modified them by different organic reactions (Diels-Alder and Sand-Meyer reaction, oxidation) and their d properties were characterized by thermogravimetry/mass spectrometry, photoelectron spealterectroscopy, and nuclear magnetic resonance spectroscopy, as well as by dispersion. The results proved that, depending on the groups built in the MWNTs, the modified carbon nanotubes are more dispersible either in polar or apolar solvents and the suspensions are stable for long time. The presence of the substituents in the MWNTs was proved by methods listed above, e.g. high concentration of sulfur was detected when SO3H groups were inserted onto the MWNTs. The enhanced thermal stability of the modified carbon nanotubes allows their further application.



Materials Science Forum (Volumes 537-538)

Edited by:

J. Gyulai and P.J. Szabó




A. Gergely et al., "Functionalization of Multi-Walled Carbon Nanotubes", Materials Science Forum, Vols. 537-538, pp. 623-630, 2007

Online since:

February 2007




[1] S. Iijima: Nature Vol. 354 (1991) pp.56-58.

[2] M.S. Dresselhaus, G. Dresselhaus: Adv. Phys. Vol. 51 (2002) pp.1-186; R. Saito, G. Dresselhaus, M. Dresselhaus, Physical Properties of Nanotubes; Imperial College Press: London, (1998).

DOI: 10.1142/p080

[3] H. Sachs, P. Hansen, M. Zheng: Commun. Math. Chem. (MATCH) Vol. 33 (1996) pp.169-241;. I. Lukovits, A. Graovac, E. Kálmán, Gy. Kaptay, P. Nagy, S. Nikolić, J. Sytchev, N. Trinajstić: J. Chem. Inf. Comput. Sci. Vol. 43 (2003) pp.609-614.

DOI: 10.1021/ci020059k

[4] R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes: Science Vol. 301 (2003) pp.344-347.

[5] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nature Mater. Vol. 2 (2003) pp.338-342.

[6] S. Iijima, T. Ichihashi, Nature Vol. 363 (1993) pp.603-605.

[7] Z. Kónya, I. Vesselényi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J.B. Nagy, A.A. Koós, Z. Osváth, A. Kocsonya, L.P. Biró, I. Kiricsi, Chem. Phys. Lett. Vol. 360 (2002) pp.429-435.

DOI: 10.1016/s0009-2614(02)00900-4

[8] H.L. Pan, L.Q. Lin, Z.X. Geo, L.M. Dai, F.S. Zhang, D.B. Zhu, R. Czern, D.L. Conell, Nanoletters Vol. 3 (1) (2003) pp.29-32.

[9] L. Cai, J.L. Bahr, Y.X. Yao, J.M. Tour, Chemistry of Materials Vol. 14 (10) (2002) pp.4235-4241.

[10] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B Vol. 103 (21) (1999) pp.4318-4322.

DOI: 10.1021/jp9845524

[11] M.T. Beck, J. Szépvölgyi, P. Szabó, E. Jakab, Carbon Vol. 39 (1) (2001) pp.147-149.

[12] J.L. Bahr, J.P. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour, J. Am. Chem. Soc. Vol. 123 (27) (2001) pp.6536-6542.

[13] C.A. Dyke, M.P. Stewart, F. Maya, J.M. Tour, Synlett Vol. 1 (2004) pp.0155-0160.

[14] Know-how CRC-HAS, KH 2005/02/01, Patent application is in progress.

[15] C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C. J. Powell, J.R. Rumble Jr., NIST X-ray Photoelectron Spectroscopy Database, Version 3. 4, National Institute of Standards and Technology, 2003 http: /srdata. nist. gov/xps.

[16] T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon Vol. 43 (2005) pp.153-161.

Fetching data from Crossref.
This may take some time to load.