Interface Microstructure and Adhesion of Zinc Coatings on TRIP Steels

Abstract:

Article Preview

Hot-dip galvanized transformation induced plasticity (TRIP) steel sheets were recently developed for automotive applications. The microstructure and the adhesion of zinc coated CMnSi TRIP steel alloyed with P were studied. The α-Zn coating adjacent to the steel substrate consists of a continuous η-Fe2Al5-xZnx inhibition layer with columnar ζ-FeZn13 intermetallic particles on top. Along the interface between the inhibition layer and the steel substrate Mn/Mn-P oxides were frequently observed. Although these oxides at the steel surface reduce the adhesion between the zinc coating and the TRIP steel, they do not cause any bare spots during galvanizing. Upon tensile deformation of the galvanized steel sheet, cracking along the α-zinc grain boundaries preceded fracture of the interface between the α-Zn layer and the inhibition layer. After 4 % deformation the average interface crack length increased linearly with the applied strain. This interface fracture was strongly influenced by the crystalline orientation of the α-Zn grains.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

1104-1109

DOI:

10.4028/www.scientific.net/MSF.539-543.1104

Citation:

G.M. Song et al., "Interface Microstructure and Adhesion of Zinc Coatings on TRIP Steels", Materials Science Forum, Vols. 539-543, pp. 1104-1109, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.