Characteristics of Gallium Oxide Nanowires Synthesized by the Metalorganic Chemical Vapor Deposition


Article Preview

We have synthesized the high-density Ga2O3 nanowires on gold (Au)-coated silicon substrates using metalorganic chemical vapor deposition. The nanowires exhibited one-dimensional structures having circular cross sections with diameters in the range of 30-200 nm. The energy dispersive x-ray spectroscopy revealed that the nanowires contained elements of Ga and O, without Au-related impurities. X-ray diffraction analysis and high-resolution transmission electron microscopy showed that the Ga2O3 nanowires were crystalline.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




H. W. Kim and S.H. Shim, "Characteristics of Gallium Oxide Nanowires Synthesized by the Metalorganic Chemical Vapor Deposition", Materials Science Forum, Vols. 539-543, pp. 1230-1235, 2007

Online since:

March 2007




[1] J. Hu, M. Ouyang, P. Yang and C. M. Lieber: Nature Vol. 399 (1999), p.48.

[2] D. S. Xu, G. L. Guo, L. L. Gui, Y. Q. Tang, Z. L. Shi, Z. X. Jin, Z. N. Gu, W. M. Liu, X. L. Li and G. H. Zhang: Appl. Phys. Lett. Vol. 75 (1999), p.181.

[3] J. R. Heath, P. J. Kuekes, G. Snyder and R. S. Williams, Science Vol. 280 (1998), p.717.

[4] L. F. Dong, J. Jiao, D. W. Tuggle, J. Petty, S. A. Elliff and M. Coulter: Appl. Phys. Lett. Vol. 82 (2003), p.1096.

[5] D. S. Ginly and C. Bright: Mater. Res. Soc. Bull. Vol. 25 (2000), p.15.

[6] N. Yamazoe: Sensors Actuators B Vol. 5 (1991), p.7.

[7] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang and S. Q. Feng: Solid State Commun. Vol. 109 (1999), p.677.

[8] B. C. Kim, K. T. Sun, K. S. Park, K. J. Im, T. Noh, M. Y. Sung and S. Kim: Appl. Phys. Lett. Vol. 80 (2002). p.479.

[9] H. W. Kim, J. H. Myung and S. H. Shim: Mater. Sci. Forum Vol. 510-511 (2006), p.654.

[10] X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun and J. J. Du: Chem. Phys. Lett. Vol. 328 (2000), p.5.

[11] G. Gundiah, A. Govindaraj and C. N. R. Rao: Chem. Phys. Lett. Vol. 351 (2002), p.189.

[12] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim: Adv. Mater. Vol. 12 (2000), p.746.

[13] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang and S. Y. Zhang: Appl. Phys. Lett. Vol. 78 (2001), p.3202.

[14] H. J. Yuan, S. S. Xie, D. F. Liu, X. Q. Yan, Z. P. Zhou, L. J. Ci, J. X. Wang, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou and G. Wang: Chem. Phys. Lett. Vol. 371 (2003), p.337.

[15] Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang and X. S. Peng: Chem. Phys. Lett. Vol. 357 (2002), p.314.

[16] L. Dong, J. Jiao, M. Coulter and L. Love: Chem. Phys. Lett. Vol. 376 (2003), p.653.

[17] N. Sakulchaicharoen and D. E. Resasco: Chem. Phys. Lett. Vol. 377 (2003), p.377.

[18] X. B. Zeng, Y. Y. Xu, S. B. Zhang, Z. H. Hu, H. W. Diao, Y. Q. Wang, G. L. Kong and X. B. Liao: J. Cryst. Growth Vol. 247 (2003), p.13.

[19] J. Park, H. -H. Choi, K. Siebein and R. K. Singh: J. Cryst. Growth Vol. 258 (2003), p.342.

[20] H. W. Kim and N. H. Kim: Appl. Surf. Sci. Vol. 230 (2004), p.301.

[21] H. W. Kim and N. H. Kim: Appl. Phys. A Vol. 81 (2005), p.763.