Electrodeposition of Metallic Nanowires in Nanoporous Polycarbonate Films


Article Preview

A polycarbonate membrane filter with numerous cylindrical nanopores was used as a template for growing metallic nanowires such as Ni, Co and Fe. The nanoporous template with pore-diameter of 150 nm, pore-length of 6000 nm, and pore-density of 108 pore•cm-2 was modified as a cathode with sputter-deposited gold layer. Inside the nano-pores, the metallic nanowires were electrochemically deposited from an acidic sulfate solution containing metal ions. The growth rate of metallic nanowires depended on the cathode potential during electrodeposition. The diameter of electrodeposited nanowires corresponded to that of nanopores in the template. TEM diffraction pattern suggested that each metallic nanowire composed of a single crystalline structure.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




T. Ohgai et al., "Electrodeposition of Metallic Nanowires in Nanoporous Polycarbonate Films", Materials Science Forum, Vols. 539-543, pp. 1253-1257, 2007

Online since:

March 2007




[1] C. R. Martin, Adv. Mater. 3, 457 (1991).

[2] T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, Science 261, 1316 (1993).

[3] I. Chlebny, B. Doudin, and J. -Ph. Ansermet, Nanostruct. Mater. 2, 637 (1993).

[4] C. R. Martin, Science 266, 1961 (1994).

[5] L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Appl. Phys. Lett. 65, 2484 (1994).

DOI: https://doi.org/10.1063/1.112672

[6] A. Blondel, J. P. Meier, B. Doudin, and J. -Ph. Ansermet, Appl. Phys. Lett. 65, 3019 (1994).

[7] K. Liu, K. Nagodawithana, P. C. Searson, and C. L. Chien, Phys. Rev. B 51, 7381 (1995).

[8] R. Ferre, K. Ounadjela, J. M. George, L. Piraux, S. Dubois, Phys. Rev. B. 56, 14066 (1997).

[9] G. P. Heydon, S. R. Hoon, A. N. Farley, S. L. Tomlinson, M. S. Valera, K. Attenborough and W. Schwarzacher, J. Phys. D: Appl. Phys. 30, 1083 (1997).

[10] J. E. Wegrowe, D. Kelly, A. Franck, S. E. Gilbert, and J. -Ph. Ansermet, Phys. Rev. Lett. 82, 3681 (1999).

[11] P. R. Evans, G. Yi, W. Schwarzacher, Appl. Phys. Lett. 76, 481 (2000).

[12] D. Aimawlawi, N. Coombs, and M. Moskovits, J. Appl. Phys. 70, 4421 (1991).

[13] A. Tayaoka, E. Tayaoka, and J. Yamasaki, J. Appl. Phys. 79, 6016 (1996).

[14] P. Forrer, F. Schlottig, H. Siegenthaler, and M. Textor, J. Appl. Electrochem. 30, 533 (2000).

[15] K. Nielsch, F. Müller, A. P. Li, and U. Gösele, Adv. Mater. 12, 582 (2000).

[16] A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, Appl. Phys. Lett. 79, 1039 (2001).

[17] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, J. Appl. Phys. 91, 3243 (2002).

[18] T. Ohgai, X. Hoffer, L. Gravier, J. E. Wegrowe , J. -Ph. Ansermet, Nanotechnology 14, 978 (2003).

[19] T. Ohgai, X. Hoffer, A. Fabian, L. Gravier, J. -Ph. Ansermet, J. Mater. Chem. 13, 2530 (2003).

[20] T. Ohgai, L. Gravier, X. Hoffer, M. Lindeberg, K. Hjort, R. Spohr, J. -Ph. Ansermet, J. Phys. D: Appl. Phys. 36, 3109 (2003).

DOI: https://doi.org/10.1088/0022-3727/36/24/003

[21] K.E. Heusler, Zeit. Electrochimie 62, 582 (1958).

[22] J. O'M. Bockris and H. Kita, J. Electrochem. Soc. 108, 676 (1961).

[23] K. Higashi, H. Fukushima, T. Urakawa, T. Adaniya, K. Matsudo, J. Electrochem. Soc. 128, 2081 (1981).

[24] H. Nakano, T. Ohgai, H. Fukushima, T. Akiyama, R. Kammel, METALL, 55, 676 (2001).

[25] L. T. Romankiw and D. A. Thompson, Properties of Electrodeposits: Their Measurement and Significance (Edited by R. Sard, H. Leidheiser and F. Ogburn, The Electrochemical Society), 389 (1975).