First-Principle Molecular-Dynamics Study of Hydrogen and Aluminium Nanowires in Carbon Nanotubes


Article Preview

In this study, we investigated the effect of aluminum species on hydrogen adsorption on carbon nanotube (CNT). This hydrogen absorption mechanism has been clarified by potential energy analysis and molecular-dynamics simulations. There were potential barriers in both reactions, absorption and dissociation of hydrogen on the surface of CNT. These activation energies were, however, certainly decreased by aluminum species. Furthermore, chemical and physical properties of the electronic structures were analyzed by kinetic energy density, tension density, and stress tensor density.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




K. Doi et al., "First-Principle Molecular-Dynamics Study of Hydrogen and Aluminium Nanowires in Carbon Nanotubes", Materials Science Forum, Vols. 539-543, pp. 1409-1414, 2007

Online since:

March 2007




[1] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Brthune and M.J. Heben: Nature Vol. 386 (1997), p.377.

[2] P. Chen, X. Wu, J. Lin and K.L. Tan: Sciences Vol. 285 (1999), p.91.

[3] F.L. Darkrin, P. Malbrunot and G.P. Tartaglia: Int. J. Hydrogen Energy Vol. 27 (2002), p.193.

[4] A. Zuttel, P. Sudan, Ph. Mauron, T. Kiyobayashi, Ch. Emmernegger and L. Schlapbach: Int. J. Hydrogen Energy Vol. 27 (2002), p.203.

DOI: 10.1016/s0360-3199(01)00108-2

[5] G.E. Froudakis: J. Phys.: Cond. Matter Vol. 14 (2002), p. R453.

[6] E. -C. Lee, Y. -S. Kim, Y. -G. Jin and K.J. Chang: Phys. Rev. B Vol. 66 (2002), p.073415.

[7] X. Sha and B. Jackson: Surf. Sci. Vol. 496 (2002), p.318.

[8] Y. Miura, H. Kasai, W. A. Diño, H. Nakanishi and T. Sugimoto: Jpn. J. Appl. Phys. Vol. 42 (2003), p.4626.

[9] T. Makita, K. Doi, K. Nakamura and A. Tachibana: J. Chem. Phys. Vol. 119 (2003), p.538.

[10] Y. Kawakami, T. Kikura, K. Doi, K. Nakamura and A. Tachibana: Mater. Sci. Forum Vol. 426-432 (2003), p.2399.

[11] Y. Kawakami, Y. Nojima, K. Doi, K. Nakamura and A. Tachibana: Electrochim. Acta Vol. 42 (2004), p.739.

[12] A. Tachibana: J. Chem. Phys. Vol. 115 (2001), p.3497.

[13] A. Tachibana: Stress Induced Phenomena in Metallization (American Institute of Physics, New York 2002), p.105.

[14] A. Tachibana: Fundamental Perspectives in Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin (Kluwer Academic Publishers, Dordrecht 2002), Vol II, p.211.

[15] A. Tachibana: Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of Robert Parr (World Scientific, Singapore 2002), Chap. 45, p.1327.

[16] A. Tachibana: Int. J. Quant. Chem. Vol. 100 (2004), p.981.

[17] A. Tachibana: J. Mol. Model. Vol. 11 (2005), p.301.

[18] D.R. Hamann: Phys. Rev. B Vol. 40 (1989), p.2980.

[19] J.P. Perdew and Y. Wang: Phys. Rev. B Vol. 45 (1992), p.13244.

[20] J.P. Perdew J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh and C. Fiolhais: Phys. Rev. B Vol. 46 (1992), p.6671.

[21] J. M. Sanz-Serna: Acta Numerica Vol. 1 (1992), p.243.

[22] H. Yoshida: Phys. Lett. A Vol. 150 (1990), p.262.

[23] V. I. Arnold: Mathematical Method of Classical Mechanics (Springer, New York, 1978).

[24] R.P. Feynman: Phys. Rev. Vol. 56 (1939), p.340.

Fetching data from Crossref.
This may take some time to load.