Microstructures and Mechanical Properties of Directionally Solidified Intermetallic Composites

Abstract:

Article Preview

This paper reviews two kinds of well-aligned fibrous microstructures produced by directional solidification of NiAl-Mo and Fe-Fe2Ta eutectics. In both these composites, fiber size and spacing decrese inversely as the square root of the growth rate. Tensile tests as a function of temperature showed that the NiAl-Mo composite has a higher yield strength and lower ductile-to-brittle transition temperature than the NiAl matrix. For the Fe-Fe2Ta composite, yield strengths in excess of 700 MPa were obtained at temperatures to 600°C, with elongations to fracture of ~3% which remained roughly constant at temperatures to 950°C.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

1495-1500

Citation:

H. Bei and E.P. George, "Microstructures and Mechanical Properties of Directionally Solidified Intermetallic Composites", Materials Science Forum, Vols. 539-543, pp. 1495-1500, 2007

Online since:

March 2007

Authors:

Export:

Price:

$38.00

[1] J. H. Westbrook and R. L. Fleischer, editors: Intermetallic Compounds - Principles and Practice (John Wily & Sons, New York 1995).

[2] G. Sauthoff: Intermetallics (VCH publishers, New York 1995).

[3] E. P. George, M. Yamaguchi, K. S. Kumar and C. T. Liu: Ann. Rev. Mater. Sci. Vol. 24 (1994), p.409.

[4] D. R. Johnson, X. F. Chen, B. F. Oliver, R. D. Noebe and J. D. Whittenberger: Intermetallics Vol. 3 (1995), p.99.

[5] H. Bei, G. M. Pharr and E. P. George: J. Mat. Sci. Vol. 39 (2004), p.3975.

[6] S. Milenkovic and R. Caram: J. Mater. Proc. Tech. Vol. 143 (2003), p.629.

[7] J. T. Guo, C. Y. Cui, Y. X. Chen, D. X. Li and H. Q. Ye: Intermetallics Vol. 9 (2001), p.287.

[8] G. A. Henshall, M. J. Strum, B. P. Bewlay and J. A. Sutliff: Metall. Mater. Trans. A Vol. 28 (1997), p.2555.

[9] S. V. Raj, J. D. Whittenberger, B. Zeumer and G. Sauthoff: Intermetallics Vol. 7 (1999), p.743.

[10] S. Milenkovic, A. A. Coelho and R. Caram: J Crystal Growth Vol. 211 (2000), p.485.

[11] J. L. Walter, H. E. Cline: Metall. Trans. Vol. 1 (1970), p.1221.

[12] A. Misra, Z. L. Wu, M. T. Kush and R. Gibala: Philos. Mag. A Vol. 78 (1998), p.533.

[13] K. M. Chang, R. Darolia and H. A. Lipsit: Acta Metall. Mater. Vol. 40 (1992), p.2722.

[14] H. Bei, E. P. George and G. M. Pharr: Scripta Mater. Vol. 51 (2004), p.875.

[15] H. Bei, E. P. George, E. A. Kenik and G. M. Pharr: Acta Mater. Vol. 51 (2003), p.6241.

[16] E. P. George, H. Bei, K. Serin and G. M. Pharr: Mater. Sci. Forum Vol. 426-4 (2003) p.4579.

[17] H. Bei, E. P. George, E. A. Kenik and G. M. Pharr: Zeit. für Metallkunde Vol. 95 (2004), p.505.

[18] H. Bei, E. P. George and G. M. Pharr: Intermetallics Vol. 11 (2003), p.283.

[19] H. Bei and E. P. George: Acta Mater. Vol. 53 (2005), p.69.

[20] R. Reviere, G. Sauthoff and D. R. Johnson and B.F. Oliver: Intermetallics Vol. 5 (1997), p.161.

[21] J. D. Hunt and K. A. Jackson: Trans. Metall. Soc. AIME Vol. 236 (1966) p.843.

Fetching data from Crossref.
This may take some time to load.