Microstructure and Creep of γ-TiAl Containing β-Stabilizer


Article Preview

Fully lamellar structures of powder metallurgy (PM), investment cast, and directionally solidified (DS) TiAl alloys containing β stabilizer were produced after stepped cool heat treatment, and interface β precipitates were formed after aging at 950°C. In addition, a columnar grain structure combined with a fully lamellar structure aligned with the load direction and interface β precipitates were formed by directional solidification and subsequent heat treatments. Creep test results of PM TiAl indicate that controlling the initial microstructures is also critical for balancing the primary and steady-state creep resistance during short and long-term tests. DS TiAl alloy exhibits a significant reduction of the primary strain and creep rate compared to polycrystalline TiAl due to the unique DS microstructure. Therefore, a DS microstructure with proper lamellar orientation and controlled interface β precipitation is the ideal if maximum time to a relatively small (<0.5%) strain is the design criterion of merit.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




D. Y. Seo et al., "Microstructure and Creep of γ-TiAl Containing β-Stabilizer", Materials Science Forum, Vols. 539-543, pp. 1543-1548, 2007

Online since:

March 2007




[1] Y-W. Kim, D.M. Dimiduk, JOM, 43(8) (1991) 40.

[2] Y-W. Kim, JOM. 46 (7), 1994, pp.30-39.

[3] Y-W. Kim, JOM. 46 (7), 1995, pp.39-41.

[4] W. Smarsly, H. Baur, et al, ISSI-3, 2001, pp.25-34.

[5] J. Beddoes, W. Wallace, L. Zhao, Inter Mater Rev 1995; 40: 197.

[6] K. Maruyama, R Yamamoto, H. Nakakuki, N. Fujitsuna, Mater Sci Eng 1997; A239-A240: 419.

[7] S. Karthikeyan, GB Viswanathan, et al. Mater Sci Eng 2002; A329-331: 621.

[8] DY Seo, J. Beddoes, L. Zhao, Metall Mater Trans 2003; 34A: 2177.

[9] WH Tian, M Nemoto, Intermetallics 1997; 5: 237.

[10] AM Hodge, LM Hsiung, TG Nieh, Scripta Mater 2004; 51: 411.

[11] T. Abe,H. Hashimoto, et al, ISSI-3, 2001, pp.35-42.

[12] L. Zhao, DY Seo, et. al., Can Aero Space Journal, 47, 2001, pp.222-227.

[13] J. Beddoes, L. Zhao, et al., Mater. Res. Soc. Symp. Proc. 552, 1999, K. 111-K119.

[14] DY Seo, J. Beddoes, L. Zhao, GA Botton, Mater Sci Eng 2002; A329-331: 810.

[15] H. Zhang, L.L. He, et al, Scripta Mater 2003; 48: 1231-1236.

[16] W.R. Chen, J. Beddoes, L. Zhao, Mater Sci Eng 2002; A323: 306-317.

[17] H. Saari, J. Beddoes, DY Seo, L. Zhao, Intermetallics 2005, 13, pp.937-943.

[18] S. Karrikeyan, G.B. Viswanathan, et al, ISSI-3, 2001, pp.717-723.

[19] S.W. Nam, H.A. Cho, et al, Mater Sci Eng 1997; A239-240: 457.

[20] H. Zhu, DY Seo, K. Maruyama, P. Au, Scripta Mater 2006; 54: 425-430.

[21] J. Beddoes, DY Seo, H. Saari, Scripta Mater 2005; 52: 745-750.

Fetching data from Crossref.
This may take some time to load.