Tensile Properties and Creep Behavior of Compositional Modified Orthorhombic Ti2AlNb Alloys

Abstract:

Article Preview

Several beta stabilizing elements such as Mo, Cr, W, V and Fe have been added to Ti- 22Al-27Nb alloy for substituting a portion of Nb in order to further improve the tensile properties and creep resistances of orthorhombic Ti2AlNb-based alloys. Six compositional modified alloys Ti- 22Al-19.2Nb-2Cr, Ti-22Al-12.5Nb-2W-2Cr, Ti-22Al-10.8Nb-2Mo-2Cr, Ti-22Al-16Nb-2Cr-2V, Ti-22Al-11Nb-2Mo-1Fe, Ti-22Al-16.3Nb-2V-1Fe were prepared by plasma arc melting. The phase constitutions of these alloys were found to be B2+O or B2+O+α2 phases. The tensile properties were investigated at room temperature, and the creep behaviors were investigated under 650oC/310MPa and 650 to 750oC/200MPa. The results showed that Mo+Fe and W+Cr addition improved effectively the 0.2% yield strength and creep resistance. Ti-22Al-11Nb-2Mo-1Fe alloy exhibited the lower transient creep strain and steady-state creep rate, and longer 1% creep-strain lifetime than Ti-22Al-27Nb alloy at 650 to 700oC creep. The dislocation-controlled creep deformation mechanism was suggested to the creep behaviors of the Mo+Fe-modified alloy.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

1549-1552

DOI:

10.4028/www.scientific.net/MSF.539-543.1549

Citation:

Y. Mao and M. Hagiwara, "Tensile Properties and Creep Behavior of Compositional Modified Orthorhombic Ti2AlNb Alloys", Materials Science Forum, Vols. 539-543, pp. 1549-1552, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.