Recent Research and Development in Metallic Materials for Biomedical, Dental and Healthcare Products Applications


Article Preview

Non-toxic allergy free alloying elements are mostly selected for preparing metallic biomaterials. Currently, functionalities such as low modulus, shape memory, super elasticity, etc. are required for the metallic biomaterials, especially for β type titanium alloys. The harmonization of metallic, ceramic, and polymer biomaterials is needed for advanced biomaterials in the future. Titanium and its alloys are attracting considerable attention with regard to applications not only in the biomedical field, but also for dental and healthcare products. In dentistry, titanium and its alloys are applied to dental products such as crowns, inlays, bridges, etc., as well as dental implants. For fabricating dental products, the dental precision casting process is important. A new dental precision casting process using calcia is currently being developed. Noble alloys such as gold base or silver base alloys are widely applied for the precision casting of dental products. Allergy-free elements, particularly Pd-free low- noble dental alloys are required.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




M. Niinomi, "Recent Research and Development in Metallic Materials for Biomedical, Dental and Healthcare Products Applications", Materials Science Forum, Vols. 539-543, pp. 193-200, 2007

Online since:

March 2007





[1] R. S. Brown and R. C. Gebeau: Sixth World Biomaterials Congress Transactions, (200), p.828.

[2] D. Kuroda, T. Hanawa, A. Yamamoto, A. Yokoyama and N. Oda: Materia Japan Vol. 43 (2004), p.139.

[3] A. Chiba, K. Kumagai, H. Takeda and N. Nomura: Mater. Sci. Forum Vol. 475-479 (2005), p.2317.

[4] ASTM Designation: F1537-00: Annual Book of ASTM Standards, ASTM Int., (2005), p.660.

[5] M. Niinomi: Proc. Mater. & Processes for Medical Devices Conf., (2003), p.417.

[6] M. Niinomi, T. Hattori and S. Niwa: Biomaterials in Orthopedics, Eds. M. J. Yaszemski, D. J. Trantolo, K. U. Lewandrowski, V. Hasirci, D. E. Altobelli and D. L. Wise, Marcel Dekker, INC, (2004), p.41.


[7] M. Niinomi: STAM, Vol. 4 (2003), p.445.

[8] K. Ishihara and T. Yoneyama: Materia Japan, Vol. 43 (20049, p.118.

[9] T. Hanawa, H. Sakamoto, Y. Iwasaki, Y. Tanaka and H. Imai: Proc. Meeting of Materials Reserach Federation of Science Council Japan, (2005), p.343.

[10] M. Niinomi, H. Fukui, S. Takahashi, K. Fukunaga and J. Hasegawa: Int. J. Mater, and Product Technology, Vol. 14 (1999), p.244.

[11] M. Niinomi, T. Mizumoto, H. Fukui, S. Takahashi, J. Hasegawa and T. Tsutsui: J. Japn. Soc. Denta. Mater. And Devices, Vol. 19 (2000), p.544.

[12] T. Mizumoto, M. Niinomi, H. Fukui and J. Hasegawa: Structural Biomaterials for the 21st Centrury, eds. M. Niinomi, T. Okabe, E. M. Taleff, D. R. Lesuere and H. E. Lippard, TMS, (2001). P. 83.

[13] Mitsuo Niinomi, Toshikazu Akahori, Tsutomu Takeuchi, and Shigeki Katsura: Materials Science Forum, Vols. 475-479 (2005), p.2303.


[14] M. Niinomi, T. Akahori, T. Takeuchi, S. Katsura, H. Fukui and H. Toda: Mater. Sci. and Engng. C, Vol. 25 (2005), p.417.

[15] Gunawarman, M. Niinomi, T. Akahori, T. Souma, M. Ikeda, H. Toda and K. Terashima: Mater. Trans., Vol. 46 (2005), p.1570.