Elastic Properties of Cu-Based Bulk Metallic Glass around Glass Transition Temperature


Article Preview

Temperature dependent elastic constants Cij(T) of Cu60Hf30Ti10 bulk metallic glass (BMG) have been investigated in a MHz frequency range using electromagnetic acoustic resonance (EMAR) up to 823 K. At room temperature, the BMG showed high Poisson’s ratio ν arising from low shear modulus G compared with that of constitutive crystalline elements. With increasing temperature, G showed usual linear temperature dependence while it suddenly drops around glass transition temperature, Tg. Within a framework of quasiharmonic approximation, Grüneisen parameter γ around Tg is estimated to be 10. This extremely large γ indicates the high anhramonicity of long wavelength limit acoustic mode phonon in the supercooled liquid state. The unusual elastic behavior can be interpreted on the basis of heterogeneous microstructure.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




R. Tarumi et al., "Elastic Properties of Cu-Based Bulk Metallic Glass around Glass Transition Temperature", Materials Science Forum, Vols. 539-543, pp. 1932-1936, 2007

Online since:

March 2007




[1] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., 49, 2645 (2001).

[2] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, (Clarendon Press, Oxford, 2002).

[3] T. Ichitsubo, S. Kai, H. Ogi, M. Hirao and K. Tanaka, Scr. Mater., 49, 267 (2003).

[4] T. Ichitsubo, E. Matsubara, S. Kai and M. Hirao, Acta. Mater., 52, 423 (2004).

[5] N. Nishiyama, A. Inoue and J. Z. Jiang, Appl. Phys. Lett., 78, 1985 (2001).

[6] L. M. Wang, W. H. Wand, R. J. Wang, Z. J. Zhan, D. Y. Dai, L. L. Sun and W. K. Wang, Appl. Phys. Lett., 77, 1147, (2000).

[7] M. Hirao and H. Ogi, EMATs for Science and Industry, (Kluwer Academic, Boston, 2003).

[8] D. Weaire, M. F. Ashby, J. Logan and M. J. Weins, Acta Metall., 19, 779 (1971).

[9] B. Golding, B. G. Bagley and F. S. L. Hsu, Phys. Rev. Lett., 29, 68 (1972).

[10] E. Lambson, W. A. Lambson, J. E. Macdonald, M. R. J. Gibbs, G. A. Saunders and D. Turnbull, Phys. Rev. B, 33, 2380 (1986).

DOI: https://doi.org/10.1103/physrevb.33.2380

[11] H. Ledbetter, Phys. Status Solidi, (b) 181, 81 (1994).

[12] T. Ichitsubo, E. Matsubara, T. Yamamoto, H. S. Chen, N. Nishiyama, J. Saida and K. Anazawa, Phys. Rev. Lett., 95, 245501 (2005).