Thermal Stability and Nanocrystallization of Amorphous Ti-Ni Alloys Prepared by Cold Rolling and Post-Deformation Annealing


Article Preview

The thermomechanical processing consisting in severe cold rolling (true strain 0.7–1.9) followed by a post-deformation annealing (200-700oC) is applied to Ti-50.0 and 50.7at%Ni alloys. The thermal stability of the amorphous phase as well as the influence of post-deformation annealing on the structure, substructure and temperature range of martensitic transformations are studied using TEM and DSC techniques. For a given level of cold work, the equiatomic alloy has a higher volume fraction of amorphous phase than the nickel-rich one. For both alloys, the higher the volume fraction of the amorphous phase, the higher the thermal stability. For a given post-deformation annealing temperature, the DSC martensitic transformation peaks from the material subjected to amorphization cold work are sharper and the hysteresis between the direct and reverse transformations is narrower than those for a material subjected to strain hardening cold work. This observation confirms the absence of the well-developed dislocation substructure in the severely deformed alloy subjected to nanocrystallization heat treatment, which is consistent with TEM results.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




V. Brailovski et al., "Thermal Stability and Nanocrystallization of Amorphous Ti-Ni Alloys Prepared by Cold Rolling and Post-Deformation Annealing", Materials Science Forum, Vols. 539-543, pp. 1964-1970, 2007

Online since:

March 2007




[1] R. Valiev: Nanostructured materials, 12(1) (1999), p.99.

[2] A.V. Sergueeva, C. Song, R. Valiev and A.K. Mukherjee: Mater. Sci. Eng., A339 (2003), p.159.

[3] V. Brailovski, I. Yu. Khmelevskaya, S.D. Prokoshkin, V.G. Pushin, E.P. Ryklina and R.Z. Valiev: Phys. Met. Metallogr., 97, Suppl. 1 (2004), p.3.

[4] J. Koike, D. M. Parkin and M. Nastasi: J. Mater. Res., 5(7) (1990), p.1414.

[5] H. Nakayama, K. Tsuchiya and M. Umemoto: Scripta Materialia, 44 (2001), p.1781.

[6] V. Brailovski, S. Prokoshkin, I. Khmelevskaya, K. Inaekyan, V. Demers, S. Dobatkin, and E. Tatyanin: Mater. Trans., 47(3) (2006) in press.


[7] S.D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, S.V. Dobatkin, K.E. Inaekyan, V. Yu. Turilina, V. Demers and E.V. Tatyanin: Metal. Sci. and Heat Treat., 5 (2005), p.24.


[8] K.E. Inaekyan, S.D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, V. Demers, S.V. Dobatkin, E.V. Tatyanin and E. Bastarash: Mater. Sci. Forum, 503-504 (2006), p.597.


[9] K.H.K. Buschow: J. Phys. F: Met. Phys., 13 (1983), p.563.

[10] J. C. Ewert, I. Boehm, R. Peter and F. Haider: Acta Materialia, 45(5), (1997), p.2197.

[11] S. D. Prokoshkin, I. Y. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tatyanin, V. V. Stolyarov and E.A. Prokofiev: Acta Materialia, 53(9) (2005), p.2703.


[12] T. Waitz, V. Kazykhanov and H.P. Karnthaler: Acta Materialia, 52 (2004), p.137.

[13] J.Z. Chen, S.K. Wu: J. Non-Crystalline Solids 288 (2001), p.159.

[14] J.J. Sunol, A. Gonzalez and L. Escoda, J. Mater. Sci., 39 (2004), p.5147.

[15] P. G Boswell: J. Therm Anal., 18 (1980), p.353.