Structure of Glass and Liquid Studied with a Conical Nozzle Levitation and Diffraction Technique


Article Preview

Two topics are described for structure analyses of glass and liquid using a combination of conical nozzle levitation (CNL) technique and diffraction experiments. The structure of high-purity bulk forsterite (Mg2SiO4) glass synthesized by a CNL technique has been determined by a combination of high-energy x-ray, neutron diffraction, and reverse Monte Carlo (RMC) modeling technique. The 3-dimensional atomic configuration derived from RMC modeling revealed that unusual network structure. In order to study structures of high-temperature and undercooled liquids, a CNL system has been developed and integrated with the two-axis diffractometer for glass, liquid, and amorphous materials at SPring-8, which is one of the third-generation synchrotron source. High-energy x-ray diffraction experiments were performed to obtain reliable diffraction data for the liquid phase of metallic glass-forming Zr-Cu binary alloys.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




A. Mizuno et al., "Structure of Glass and Liquid Studied with a Conical Nozzle Levitation and Diffraction Technique", Materials Science Forum, Vols. 539-543, pp. 2012-2017, 2007

Online since:

March 2007




[1] J.K.R. Weber, S. Krishnan and P.C. Nordine: J.O.M. Vol. 43 (1991), p.8.

[2] P.C. Nordine, J.K.R. Weber and J.G. Abadie: Pure Appl. Chem. Vol. 72 (2000), p.2127.

[3] D.A. Winborne, P.C. Nordine, D.E. Rosner and N.F. Marley: Metall. Trans. Vol. 7B (1976), p.711.

[4] W.K. Rhim, M. Collender, M.T. Hyson, W.T. Simms and D.D. Elleman: Rev. Sci. Instrum. Vol. 56 (1985), p.307.

[5] D.M. Herlach, R. Cochrane, I. Egry, H. Fecht and L. Greer: Int. Mat. Rev. Vol 38 (1993) p.273.

[6] R.L. McGreevy and L. Pusztai, Mol. Simul. Vol. 1 (1988), p.359.

[7] J.A. Tangeman, B. L. Phillips, A. Navrotsky, J.K.R. Weber, A.D. Hixon and T.S. Key: Geophys. Res. lett. Vol. 28 (2001), p.2517.

[8] F.C. Frank: Proc. R. Soc. London A Vol. 215 (1952), p.43.

[9] P.J. Steinhardt, D.R. Nelson and M. Ronchetti: Phys. Rev. B, Vol. 28 (1983), 784-805.

[10] A.S. Clarke and J.D. Wiley: Phys. Rev. B Vol. 35 (1987), p.7350.

[11] K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson and D.S. Robinson: Phys. Rev. Lett. Vol. 90 (2003), p.195504.

[12] T. Shenck, D. Holland-Moritz, V. Simonet, R. Bellissent and D. M. Herlach: Phys. Rev. Lett. Vol. 89 (2002), p.075507.

[13] J. Saida, M. Kasai, E. Matsubara and A. Inoue: Ann. Chim. Sci. Mat. Vol. 27 (2002), p.77.

[14] J. Saida, M. Matsushita and A. Inoue: Mater. Trans. Vol. 43 (2003), p. (1937).

[15] A. Mizuno, S. Matsumura, M. Watanabe, S. Kohara and M. Takata: Mater. Trans. Vol. 46 (2005), p.2799.

[16] S. Kohara, K. Suzuya, Y. Kashihara, N. Matsumoto, N. Umesaki and I. Sakai: Nucl. Instr. Meth. A Vol. 467-468 (2001), p.1030.

[17] R.L. McGreevy, J. Phys.: Condens. Matter Vol. 13 (2001), p. R877.

[18] S. Kohara, K. Suzuya, K. Takeuchi, C.K. Loong, M. Grimsditch, J.K.R. Weber, J.A. Tangeman and T. S. Key: Science Vol. 303 (2004), p.1649.

[19] F.J. Molster, I. Yamamura, L.B.F.M. Waters, A.G.G.M. Tielens, Th. de Graauw, T. de Jong, A. de Koter, K. Malfait, M.E. van den Ancker, H. van Winckel, R. H. M. Voorsk and C. Waelkens: Nature Vol. 401 (1999), p.563.

DOI: 10.1038/44085

[20] Y. Waseda: The Structure of Non-Crystalline Materials, (McGraw-Hill, New York, 1980).

[21] N. Mattern, U. Kühn, H. Hermann, H. Ehrenberg, J. Neuefeind and J. Eckert: Acta Mater. Vol. 50 (2002), p.305.

Fetching data from Crossref.
This may take some time to load.