Growth and Atomistic Structure Study of Disordered SiGe Mixed Semiconductors


Article Preview

The atomistic structure of Czochralski-grown SixGe1-x binary mixed semiconductor was studied experimentally and theoretically. By extended X-ray absorption fine structure (XAFS) studies it was found that bulk SiGe semiconductor is a random mixture and that the Ge-Ge, Ge-Si and Si-Si bond lengths maintain distinctly different lengths and vary in a linear fashion against the alloy composition across the whole composition range 0 < x < 1, in good agreement with expectations derived from the ab-inito electronic structure calculations. The result indicates that SiGe is a suitable model for a disorder mixed material and that the bond lengths and bond angles are distorted with the composition.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




I. Yonenaga et al., "Growth and Atomistic Structure Study of Disordered SiGe Mixed Semiconductors", Materials Science Forum, Vols. 539-543, pp. 2043-2047, 2007

Online since:

March 2007




[1] I. Yonenaga: J. Mater. Sci.: Mater. In Electronics 10 (1999) p.329.

[2] D. B. Aldrich, R. J. Nemanich and D. E. Sayers: Phys. Rev. B 50 (1994) p.15026. (a) (b) Fig. 3. Schematic model of the local atomistic structure of (a) idela diamond-cubic crystal and (b) SiGe mixed semiconductor.

[3] J. C. Woicik, K. E. Miyano, C. A. King, R. W. Johnson, J. G. Pellegrino, T. -L. Lee and Z. H. Lu: Phys. Rev. B 57 (1998) p.14592.

[4] J. C. Aubry, T. Tyliszczak, A. P. Hitchcock, J. -M. Baribeau and T. E. Jackman: Phys. Rev. B 59 (1999) p.12872.

[5] L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Itahca, NY, 1967).

[6] L. Vegard: Z. Phys. 5 (1921) p.17.

[7] A. Béraud, J. Kulda, I. Yonenaga, M. Foret, B. Salce and E. Courtens; Physica B 350 (2004) p.254.

[8] I. Yonenaga and M. Sakurai: Phys. Rev. B 64 (2001) p.113206.

[9] I. Yonenaga, M. Sakurai, M.H.F. Sluiter and Y. Kawazoe: J. Metastable & Nanocryst. Mater. 24-25 (2005) p.523.

[10] M. H. F. Sluiter and Y. Kawazoe: Mater. Trans. 42 (2001) p.2201.

[11] I. Yonenaga, A. Matsui, S. Tozawa, K. Sumino and T. Fukuda: J. Cryst. Growth 154 (1995) p.275.

[12] I. Yonenaga: J. Cryst. Growth 275 (2005) p.91.

[13] J. P. Dismukes, L. Ekstrom and R. J. Paff: J. Phys. Chem. 68 (1964) p.3021.

[14] J. Z. Tischler, J. D. Budai, D. E. Jesson, G. Eres, P. Zschack, J. M. Baribeau and D. C. Houghton: Phys. Rev. B 68 (1995) p.10947.


[15] D. Stekamp and W. Jäger: Philos. Mag. A 65 (1992) p.1369.

[16] Y. Cai and M. F. Thorpe: Phys. Rev. B 46 (1992) p.15872.

[17] N. Mousseau and M. F. Thorpe: Phys. Rev. B 48 (1993) p.5172.

[18] P. Venezuela, G. M. Dalpian, A. J. R. da Silva and A. Fazzio: Phys. Rev. B 64 (2001) p.193202.

[19] J. C. Mikkelsen, Jr., J. B. Boyce: Phys. Rev. Lett. 49 (1982) p.1412.

[20] A. Balzarotti, in: Ternary and Multinary Compounds, edited by S. K. Deb and A. Zunger, Materials Research Society, Pittsburg (1987) p.333.

[21] K. Hayashi, Y. Takahashi, I. Yonenaga and E. Matsubara: Mater. Trans. 45 (2004) p. (1994).