Temperature Distribution, Phase Transformations and Residual Stresses in Heat Treatment of Grinding Balls

Abstract:

Article Preview

The goal of this work is to model the temperature distribution, phase transformation and residual stresses induced during the heat treatment of 3 and 5 inches diameter grinding balls. In the first step, the radial distribution of temperature inside the balls was calculated and validated experimentally. During the quenching, the model considers factors such as the heating of the water and the formation of a steam layer that surrounds the balls in the beginning of the treatment. In a second step, with the temperature distribution, the CCT curves of the steel and the Koistinen- Marburger equation, the radial distribution of martensite was determined during the heat treatment. Finally, in the third step, the residual stresses field was modeled considering the temperature distribution, the force equilibrium equations and the constitutive thermo-elastic relationships, where the expansion due to the austenite – martensite transformation was included. In the temperature distribution, a good experimental-theoretical agreement was obtained, with differences at the end of the quenching no higher than 0,5 %. Respect to the residual stresses, the model indicates that the maximum tensile values occur at certain depth below the surface of the balls and the experimental evidence of the behavior of the balls in a mill simulator, as well as the measured residual stresses by means of DRX shows an acceptable agreement with the theoretical predictions.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2234-2239

DOI:

10.4028/www.scientific.net/MSF.539-543.2234

Citation:

C. Camurri et al., "Temperature Distribution, Phase Transformations and Residual Stresses in Heat Treatment of Grinding Balls", Materials Science Forum, Vols. 539-543, pp. 2234-2239, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.