Modelling of Precipitation Hardening in Alloys: Effective Analytical Submodels for Impingement and Coarsening


Article Preview

To predict strength evolution of precipitation hardening alloys, a wide range of modelling approaches have been proposed. The most accurate published models are physics-based approaches which use both nanoscale processes with their related constants and parameters, as well as parameters calibrated to one or more macroscale measurements of yield strength of one or more samples. Recent developments in submodels including analytical expressions for volume fraction and size evolution including impingement and coarsening are reviewed. It is also shown that Kampmann-Wagner and JMAK models are generally not consistent with data on the progress of precipitations in the main precipitation hardening Al alloys systems, and improved model formulations are described.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




M. J. Starink, "Modelling of Precipitation Hardening in Alloys: Effective Analytical Submodels for Impingement and Coarsening", Materials Science Forum, Vols. 539-543, pp. 2365-2370, 2007

Online since:

March 2007





[1] M.J. Starink and S.C. Wang: Acta Mater., Vol. 51 (2003) p.5131.

[2] H.R. Shercliff and M.F. Ashby: Acta Metall. Mater., Vol. 38 (1990) p.1789.

[3] J.W. Evancho and J.T. Staley: Metall. Trans., Vol. 5 (1974) p.43.

[4] J.T. Staley: Mater. Sci. Techn., Vol. 3 (1987) p.923.

[5] V. Sessa, M. Fanfoni and M. Tomellini: Phys. Rev. B, Vol. 54 (1996) p.836.

[6] A.A. Burbelko, E. Fraś and W. Kapturkiewicz, Mater. Sci. Eng. A: Vol. 413-414 (2005) p.429.

[7] R. Wagner and R. Kampmann, in Mater. Sci. and Techn.: A Comprehensive Treatment: Phase Transf. in Mater., Ed. by R. Cahn, P. Haasen and E.J. Kramer, Wiley-VCH, Vol. 5 (1990), p.215.

[8] M.J. Starink and A. -M. Zahra: Thermochim. Acta, Vol 292 (1997) p.159.

[9] M.J. Starink: J. Mater. Sci., Vol. 36 (2001) p.4433.

[10] Eon-Sik Lee and Young G. Kim: Acta Metall. Mater., Vol. 38 (1990) p.1669.

[11] M.J. Starink and A. -M. Zahra: Acta Mater., Vol. 46 (1998) p.3381.

[12] P.A. Rometsch, M.J. Starink and P.J. Gregson: Mater. Sci. Eng. A, Vol. 339 (2003) p.255.

[13] M.J. Starink and X.M. Li: Metall Mater Trans A, Vol 34A (2003) p.899.

[14] M.K. Miller, K.F. Russell, P.J. Pareige, M.J. Starink and R.C. Thomson: Mater. Sci. Eng. A, Vol. 250 (1998) p.49.

[15] M.J. Starink, N. Gao, J.L. Yan: Mater. Sci. Eng. A, Vol. 387-389 (2004) p.222.

[16] M.J. Starink: Int. Mater. Rev., Vol. 49 (2004) p.191.

[17] M.J. Starink, to be submitted (2006).

[18] G. Liu, G.J. Zhang, X.D. Ding, J. Sun and K.H. Chen: Mater. Sci. Eng. A 344 (2003), p.113.

[19] R. Poduri and L.Q. Chen: Acta Mater. 46 (1998) 3915.

[20] S.P. Marsh SP and M.E. Glicksman: Acta Mater., Vol. 44 (1996) p.3761.

[21] W. Voorhees and M.E. Glicksman: Acta Metall., Vol. 32 (1984) p. (2013).

[22] A.J. Ardell: Acta Metall., Vol. 20 (1972) p.61.

[23] J.L. Yan, MPhil/PhD Transfer Thesis, University of Southampton, (2004).