Phase-Field Modeling of the Microstructure Evolutions in Fe-Cu Base Alloys


Article Preview

The phase transformations and the microstructure developments in Fe-Cu base alloys during isothermal aging are simulated based on the phase-field method. Since the chemical free energy used in this simulation is obtained from the thermodynamic database of phase diagrams, the calculated microstructure changes are directly related to the phase diagram of the real alloy system. Firstly the phase decomposition and the microstructure changes in the Fe-Cu binary alloy system are demonstrated as the simple example of the phase-field modeling, i.e., the phase decomposition in bcc phase where the Cu-rich phase forms, the structural phase transformation from bcc to fcc phase in the Cu-rich nano-particle, and the shape change of fcc-Cu precipitates from sphere to rod. Secondly, the phase decomposition in bcc phase of the multi-component alloys such as the Fe-Cu-X (X=Mn,Ni) ternary system and the Fe-Cu-Mn-Ni quaternary alloy is simulated. At the early stage of aging, the Cu-rich zone with bcc structure begins to nucleate, and the component X (=Mn, Ni) is partitioned to the Cu-rich phase. When the Cu composition in the precipitate reaches equilibrium, the component X inside the precipitates moves toward to the interface region between the precipitate and matrix. Finally, there appears the shell structure that the Cu precipitates surrounded by the thin layer with high concentration of component X.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




T. Koyama and H. Onodera, "Phase-Field Modeling of the Microstructure Evolutions in Fe-Cu Base Alloys", Materials Science Forum, Vols. 539-543, pp. 2383-2388, 2007

Online since:

March 2007




[1] L-Q. Chen: Annu. Rev. Mater. Res., 32(2002), 113.

[2] W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma: ibid, 32(2002), 163.

[3] T. Koyama and H. Onodera: Mater. Trans. JIM., 44(2003), 1523.

[4] T. Koyama and H. Onodera: Mater. Trans. JIM., 44(2003), 2503.

[5] T. Koyama and H. Onodera: Mater. Trans. JIM., 46(2005), 1187.

[6] T. Koyama and H. Onodera: J phase Equilibria and Diffusion, (2006), in press.

[7] N. Saunders and A.P. Miodownik : CALPHAD, (Pergamon, Oxford, UK, 1998).

[8] SSOL database in Thermo-Calc (ver. M), Thermo Calc software AB.

[9] J. Miettinen: Computer Coupling of Phase Diagrams and Thermochemistry, 27(2003), 141.

[10] J. E. Hilliard: Phase Transformation, (ASM, Metals Park, Ohio, 1970) 497.

[11] T. Mura: Micromechanics of Defects in Solids, 2nd Rev. Ed., (Kluwer Academic, 1991).

[12] Metals data book, Japan Institute of Metals ed., Maruzen, Tokyo, Japan, (1993).

[13] A. Deschamps, M. Militzer and W.J. Poole: ISIJ International, 41(2001), 196.

[14] I. Loginova, J. Agren, and G. Amberg, Acta Mater., 52(2004), 4055.

[15] M. K. Miller, P. Pareige and M. G. Burke: Mater. Charact. 44(2000), 235.

[16] M. K. Miller, B. D. Wirth and G. R. Odette: Mater. Sci. Eng. A, 353(2003), 133.

[17] A. Seko, N. Odagaki, S. R. Nishitani, I. Tanaka and H. Adachi: Mater. Trans., 45(2004), (1978).