A Thermodynamic Description of the Al-Ir System

Abstract:

Article Preview

The thermodynamic assessment of the Al-Ir binary system, one of the key sub-systems of the Ir-based alloys, was performed using the CALPHAD technique. The AlIr(B2) phase was described using the two sublattice model with the formula (Al,Ir)0.5(Ir,Va)0.5, while other intermetallic phases were treated as stoichiometric compounds. The calculated data of the phases in the Al-Ir system can be used to accurately reproduce experimental data, such as phase equilibria, invariant reactions, and formation enthalpies of the intermetallic phases.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2389-2394

Citation:

T. Abe et al., "A Thermodynamic Description of the Al-Ir System", Materials Science Forum, Vols. 539-543, pp. 2389-2394, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] Y. Yamabe-Mitarai, Y. Ro, T. Maruo, H. Harada: Intermetallics. Vol. 7 (1999), p.49.

[2] Y. Yamabe-Mitarai, Y. Gu, Y. Ro, S. Nakazawa, T. Maruo, H. Harada: Scripta Mater. Vol. 41 (1999), p.305.

[3] Y. Yamabe-Mitarai, H. Aoki, P. Hill, H. Harada: Scripta Mater. Vol. 48 (2003), p.565.

[4] A. Bennet: Mater. Sci. Technol. Vol. 2 (1986), p.257.

[5] U. Schulz, K. Fritscher, M. Peters: Surf. Coat. Technol. Vol. 82 (1996), p.259.

[6] B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Pruessner, K.B. Alexander: Mater. Sci. Eng. A Vol. 245 (1998), p.201.

[7] Y. Yamabe-Mitarai, H. Aoki: Mater. Sci. Eng. A Vol. 362 (2003), p.152.

[8] F. Wu, H. Murakami, H. Harada: Mater. Trans. Vol. 44 (2003), p.1675.

[9] F. Wu, H. Murakami, A. Suzuki: Surf. Coat. Tech. Vol. 168 (2003), p.62.

[10] H. Murakami, T. Yano, S. Sodeoka: Mater. Trans. Vol. 45 (2004), p.2886.

[11] P. Kuppusami, H. Murakami: Surf. Coat. Tech. Vol. 186(2004), p.377.

[12] F. Wu, H. Murakami, Y. Yamabe-Mitarai, H. Harada, H. Katayama, Y. Yamamoto: Surf. Coat. Tech. Vol. 184 (2004), p.24.

[13] H. Hosoda, T. Takahashi, M. Takehara, T. Kingetsu, H. Masumoto: Mater. Trans. JIM Vol. 38 (1997), p.871.

DOI: https://doi.org/10.2320/matertrans1989.38.871

[14] K.N. Lee, W.L. Worrel: Oxidation Met. Vol. 32 (1989), p.357.

[15] P. Esslinger, K. Schubert: Z. Metallkd. Vol. 48 (1957), p.126.

[16] H. Schulz, K. Ritapal, W. Bronger, W. Klemm: Z. Anorg. Allg. Chem. Vol. 357 (1968), p.299.

[17] K. Axler, R.B. Roof: Adv. X-Ray Anal. Vol. 29 (1986), p.333.

[18] L.E. Edshammer: Acta Chem. Scand. Vol. 21 (1967), p.1104.

[19] L.E. Edshammer: Acta Chem. Scand. Vol. 22 (1968), p.2822.

[20] R. Ferro, R. Capelli, R. Marazza, S. Delfino: Atti Accad. Naz. Lincei, Cl. Fis. Mat. Nat. Rend. Vol. 45 (1968), p.556.

DOI: https://doi.org/10.4171/rlm

[21] Y. Grin, K. Peters: Z. Zristallogr. Vol. 212 (1997), p.439.

[22] K.M. Axler, E.M. Foltyn, D.E. Peterson, W.B. Hutchinson: J. Less-Common Met. Vol. 156 (1989), p.213.

[23] P.J. Hill, L.A. Cornish, M.J. Witcomb: J. Alloys Compd. Vol. 280 (1998), p.240.

[24] S. Miura, K. Ohkubo, Y. Terada, Y. Kimura, Y. Mishima, Y. Yamabe-Mitarai, H. Harada, T. Mohri: J. Alloys Compd. Vol. 393 (2005), p.239.

[25] M. Ellner, K. Kolatschek, B. Predel: J. Less-Common Met. Vol. 170 (1991), p.171.

[26] W.G. Jung, O.J. Kleppa: Metall. Trans. B Vol. 23B (1992), p.53.

[27] H.L. Skriver: CAMP website, http: /databases. fysik. dtu. dk/hlsDB/hlsDB. php.

[28] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen: Cohesion in Metals Transition Metal Alloy (North-Holland Physics Publishing, Amsterdam 1989).

[29] A.T. Dinsdale: CALPHAD, Vol. 15 (1991), p. 317A.

[30] Y.A. Chang, J.P. Neumann: Prog. Solid Stat Chem. Vol. 14 (1982), p.221.

[31] X. Ren, K. Ohtsuka: Phil. Mag. A Vol. 80 (2000), p.467.

[32] M. Hillert, M. Selleby: J. Alloys Compd. Vol. 329 (2001), p.208.

[33] B. Sundman, B. Jannson, J.O. Andersson: CALPHAD Vol. 9 (1985), p.153.

[34] I. Ansara, N. Dupin, H.L. Lukas, B. Sundman: J. Alloys Compd. Vol. 247 (1997), p.20.