Modeling of Generalized Continua on Macroscopic Scales: Towards Computational Mechanics of Microstretch Continua

Abstract:

Article Preview

First numerical results for microstretch continua, embedded in a hierarchy of generalized continuum models,will be presented. The governing equations are derived using a variational approach, providing an alternative to Eringens approach of modeling microstretch continua. A constitutive theory for linear elastic microstretch continua is formulated and used in the simulations. Simple examples will be investigated in order to demonstrate the compatibility of the model hierarchy. The results obtained so far are promising and suggest that a further in-depth analysis of (in)elastic microstretch continua based on the here proposed consistent and computationally simple approach to microstructured materials is worthwile.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2545-2550

Citation:

N. Kirchner and E. Kirchner, "Modeling of Generalized Continua on Macroscopic Scales: Towards Computational Mechanics of Microstretch Continua", Materials Science Forum, Vols. 539-543, pp. 2545-2550, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] Cosserat E. and Cosserat F.: Théorie des corps déformable. Hermann et Fils (1909).

[2] De Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. (1991), Vol. 8, p.317.

[3] Dietsche, A, Steinmann, P. and Willam, K.: Micropolar elastoplasticity and its role in localization analysis. Int. J. Plast. (1993), Vol. 9, p.813.

[4] Eringen A.C. and Kafadar, C.B.: Polar field theories. Continuum Physics, Academic Press New York (1976) Vol 4, p.1.

[5] Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999).

[6] N.P. Kirchner & P. Steinmann; A unifying treatise on variational principles for gradient and micromorphic continua. Philosophical Magazine, (2005), Vol. 5, p.3875.

DOI: https://doi.org/10.1080/14786430500362421

[7] Ciarletta, M.: On the bending of microstretch plates. Int. J. Engng. Sci. (1999), Vol. 37 p.1309.

[8] DeCicco, S.: Stress concentration effects in microstretch elastic bodies. Int. J. Engng. Sci. (2003), Vol. 41, p.187.

[9] Iesan, D. and Nappa, L.: On the plane strain of microstretch elastic solids. Int. J. Engng. Sci. (2001), Vol. 39, p.1815.

[10] Kumar, R. and Deswal, S.: Wave propagation through a cylindrical bore contained in a microstretch elastic medium. Journal of Sound and Vibration (2002), Vol. 250, p.711.

DOI: https://doi.org/10.1006/jsvi.2001.3925

[11] Singh B. Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int. J. Engng. Sci. (2001), Vol. 39, p.583.

DOI: https://doi.org/10.1016/s0020-7225(00)00051-3

[12] Mindlin R.D.: Microstructure in linear elasticity. Arch. Rat. Mech. Anal. (1963), Vol. 16, p.51.

[13] Steinmann, P.: Theory and numerics of ductile microploar elastoplastic damage. Int. J. Engng. Sci. (1995), Vol. 38, p.583.

[14] Steeb, H. and Diebels, S.: Continua with affine microstructure: theoretical aspects and applications. Proc. Appl. Math. Mech. (2005), Vol. 5, p.319.

DOI: https://doi.org/10.1002/pamm.200510136