A Multi-Scale Model of Martensitic Transformation Induced Plasticity at Finite Strains


Article Preview

A physically-based multi-scale model for martensitic transformation induced plasticity is presented. At the fine scale, a model for one transforming martensitic variant is established based on the concept of a lamellae composed of a martensitic plate and an austenitic layer. Next, the behaviour of 24 potentially transforming variants is homogenized towards the behaviour of an austenitic grain. As a simple example, the model is applied to deformation and transformation of a single austenitic grain under different deformation modes.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




V.G. Kouznetsova and M.G.D. Geers, "A Multi-Scale Model of Martensitic Transformation Induced Plasticity at Finite Strains", Materials Science Forum, Vols. 539-543, pp. 2588-2593, 2007

Online since:

March 2007




[1] J. Patel and M. Cohen: Acta Metall., Vol. 1 (1953), p.531.

[2] J.B. Leblond, G. Mottet and J.C. Devaux: J. Mech. Phys. Solids Vol. 34 (1986), p.395 and p.411.

[3] R. Stilngfellow, D. Parks and G. Olson: Acta Metall. Mater., Vol. 40 (1992), p.1703.

[4] F. Fischer, M. Berveiller, K. Tanaka and E. Oberaigner: Arch. Appl. Mech., Vol. 64 (1994), p.54.

[5] F. Marketz and F. Fischer: Modelling Simul. Mater. Sci. Eng., Vol 2 (1994), p.1017.

[6] M. Cherkaoui, M. Berveiller and H. Sabar: Int. J. Plasticity Vol 14 (1998), p.597.

[7] V. Levitas, A. Idesman and E. Stein: Int. J. Solids Structures, Vol. 35 (1998), p.855.

[8] S. Turteltaub and A.S.J. Suiker: J. Mech. Phys. Solids Vol. 53 (2005), p.1747.

[9] M.G.D. Geers: Comput. Meth. Appl. Mech. Engrg., Vol. 193 (2004), p.3377.

[10] M. Wechsler, D. Lieberman and T. Read: Trans. AIME J. Metals, Vol. 197 (1953), p.1503.

[11] F. Fischer and G. Reisner: Acta mater., Vol. 46 (1998), p. (2095).

[12] V. Levitas: Int. J. Plasticity, Vol. 18 (2002), p.1499.