Preparation of Ti3SiC2 Particulate Reinforced Cu Matrix Composite by Warm Compaction Powder Metallurgy

Abstract:

Article Preview

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2737-2742

Citation:

Y. Y. Li et al., "Preparation of Ti3SiC2 Particulate Reinforced Cu Matrix Composite by Warm Compaction Powder Metallurgy", Materials Science Forum, Vols. 539-543, pp. 2737-2742, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] S. Kubo and K. Kato. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current. Wear Vol. 216 (1998) p.172.

DOI: https://doi.org/10.1016/s0043-1648(97)00184-1

[2] D. H. He, R. R. Manory and N Grady. Wear of railway contact wires against current collector materials. Wear Vol. 215 (1998), p.146.

DOI: https://doi.org/10.1016/s0043-1648(97)00262-7

[3] C. Biselli, D. G. Morris and N. Randall. Mechanical alloying of high-strength copper alloys containing TiB2 and Al2O3 dispersoid particles. Scripta. Metall. Mater. Vol. 30(10) (1994) p.1327.

DOI: https://doi.org/10.1016/0956-716x(94)90267-4

[4] J. Lee, J. Y. Jung, E. Lee, W. J. Park, S. Ahn and N. J. Kim. Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming. Mater. Eng. A Vol. 277 (2000) p.274.

DOI: https://doi.org/10.1016/s0921-5093(99)00551-1

[5] C. H. William. Commercial processing of metal matrix composites. Mater. Sci. Eng. A Vol. 244 (1998) p.75.

[6] D. W. Lee and B. K. Kim. Nanostructured Cu-Al2O3 composite produced by thermochemical process for electrode application. Mater. Lett. (2004) Vol. 58(3-4) p.378.

[7] P. K. Jena, E. A. Brocchi and M. S. Motta. In-situ formation of Cu-Al2O3 nano-scale composites by chemical routes and studies on their microstructure. Mater. Sci. Eng. A Vol. 313 (2001) p.180.

[8] I. Kyoshi and A. Masakasu. Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting. Mater. Trans. JIM Vol. 34(8) (1993) p.718.

DOI: https://doi.org/10.2320/matertrans1989.34.718

[9] T. S. Srivatsan, N. Narendra and J. D. Troxell. Tensile deformation and fracture behavior of an oxide dispersion strengthened Copper alloy. Mater. Design Vol. 21 (2000) p.191.

DOI: https://doi.org/10.1016/s0261-3069(99)00096-5

[10] M. W. Barsoum and T. El-Raghy. Synthesis and characterization of a remarkable ceramic: J. Am. Ceramic Soc. Vol. 79(7) (1996) p. (1953).

[11] H. G. Rutz and F. G. Hanejko. High Density Processing of High Performance Ferrous Materials. The International Journal of Powder Metallurgy Vol. 31(1) (1995) p.9.

[12] H. Rutz, F. Hanejko and S. Luk. Warm compaction offers high density at low cost. Met. Powder Report Vol. 9 (1994) p.40.

[13] S. Chang, C. Chen, S. Lin and T. Z. Kattamis. Electrical resistivity of metal matrix composites. Acta Materialia Vol. 51 (2003) p.6191.

[14] S. Torquato. Modeling of physical properties of composite materials. Inter. J. Solids and Structures Vol. 37 (2000) p.411.

Fetching data from Crossref.
This may take some time to load.