The Effect of Chemistry and Cooling Rate on the Latent Heat Released during the Solidification of the 3XX Series of Aluminum Alloys

Abstract:

Article Preview

The latent heat of solidification of any alloy depends on its chemistry that consequently affects the macro and microstructures for the given solidification conditions. In order to analyze the effects of chemistry on the release of latent heat during solidification of the industrial 3XX series of aluminum alloys, four different levels of silicon (5, 7, 9 and 11wt% Si) and three different levels of copper (1, 2 and 4 wt% of Cu) were taken into consideration. The solidification process was studied at cooling rates of 6 and 10°C/minute. The solidification path of these alloys was determined and the corresponding latent heat released during the solidification process was measured using a Differential Scanning Calorimeter (DSC). The tested hypoeutectic alloy chemical composition was expressed by the novel concept of silicon equivalency. The findings indicate that increases in the cooling rates shift the characteristic temperatures toward lower values without having a significant effect on the amount of released latent heat.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

299-304

DOI:

10.4028/www.scientific.net/MSF.539-543.299

Citation:

M. B. Djurdjevic et al., "The Effect of Chemistry and Cooling Rate on the Latent Heat Released during the Solidification of the 3XX Series of Aluminum Alloys", Materials Science Forum, Vols. 539-543, pp. 299-304, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.