Enlarging the Temperature Range for Maximum Wear Resistance of TiNi Alloy Using a NTE Phase


Article Preview

The near-equiatomic TiNi alloy has been demonstrated to possess high wear resistance, which largely benefits from its pseudoelasticity (PE). However, the PE occurs only in a small temperature range, which makes the wear resistance of this alloy unstable as temperature changes, caused by environmental instability or frictional heating. Therefore, enlarging the working temperature of PE could considerably improve this alloy as a novel wear-resistant material. One possible approach is to develop a self-built temperature-dependent internal stress field by taking the advance of the difference in thermal expansion between the pseudoelastic matrix and a reinforcing phase. Such a T-dependent internal stress could adjust the martensitic transformation temperature to respond changes in environmental temperature so that the temperature range of PE could be enlarged, thus leading to a wide temperature range in which the minimum wear loss is retained. Research was conducted to investigate effects of an added second phase having a negative thermal expansion (NTE) coefficient on the wear resistance of a near-equiatomic TiNi alloy. It was demonstrated that the temperature range of this modified material in which the wear loss dropped was enlarged. In addition, the wear resistance of such a TiNi-matrix composite was on one order of magnitude higher than that of unmodified TiNi alloy.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




I. Radu and D. Y. Li, "Enlarging the Temperature Range for Maximum Wear Resistance of TiNi Alloy Using a NTE Phase", Materials Science Forum, Vols. 539-543, pp. 3261-3266, 2007

Online since:

March 2007




[1] J. van Humbeeck, R. Stalmans, P.A. Besselink, in: J.A. Helsen, H.J. Breme (Eds. ), Metals as biomaterials (John Wiley & Sons, Chichester, 1998) PP. 73-100.

[2] Y.Q. Fu, H.J. Du, W.M. Huang, S. Zhang, M. Hu: Sensors and Actuators Vol. 112 (2004) p.395.

[3] H. Kahn, W.L. Benard, M.A. Huff, A.H. Heuer: Mater. Res. Soc. Symposium - Proc. Vol. 444 (1997) p.227.

[4] T.W. Duerig, A.R. Pelton, D. Stockel: Bio-Med Mater. & Eng. Vol. 6 (1996) p.255.

[5] H. Fujita, H. Toshiyoshi: Microelectronics Journal Vol. 29 (1998) p.637.

[6] J. Ryhanen, M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemela, P. Sandvik, W. Serlo: Journal of Biomedical Mater. Res. Vol. 41 (1998) p.481.

DOI: https://doi.org/10.1002/(sici)1097-4636(19980905)41:3<481::aid-jbm19>3.3.co;2-2

[7] S. Miyazaki, K. Otsuka, C.M. Wayman: Acta Metall. Vol. 37 (1989) p.1873.

[8] W. Cai, X.L. Lu, L.C. Zhao: Mater. Sci. & Eng. A Vol. 394 (2005) p.78.

[9] D.Y. Li: Wear Vol. 221 (1998) p.116.

[10] R.H. Richman, A.S. Rao, D. Kung: Wear Vol. 181 (1995) p.80.

[11] J. Singh, A.T. Alpas: Wear Vol. 181 (1995) p.302.

[12] P. Clayton: Wear Vol. 162-164 (1993) p.202.

[13] Y.N. Liang, S.Z. Li, Y.B. Jin, W. Jin, S. Li: Wear Vol. 198 (1996) p.236.

[14] D.Y. Li: Smart Mater. & Structures Vol. 9 (2000) p.717.

[15] T.W. Duerig, A.R. Pelton, Ti-Ni Shape Memory Alloys, in: Materials Properties Handbook: Titanium Alloys (ASM International, New York, 1994) PP. 1035-1048.

[16] K. Otsuka, X. Ren: Progress in Mater. Sci. Vol. 50 (2005) p.511.

[17] T.C. Zhang, D.Y. Li: Mater. Sci. & Eng. A Vol. 329 (2002) p.563.

[18] K.H. Eckelmeyer: Scripta Metall. Vol. 10 (1976) p.667.

[19] P.M. Ossi: Mater. Sci. &Eng. Vol. 77 (1986) pL5.

[20] H.C. Lin, K.M. Lin, S.K. Chang, C.S. Lin: J of Alloys and Comp. Vol. 284 (1999) p.213.

[21] R. Santamarta, J. Pons, E. Cesari, C. Segui: Journal De Physique IV Vol. 112 (2003) p.647.

[22] Y.C. Lo, S.K. Wu, C.M. Wayman: Scripta Metall. et Mater. Vol. 24 (1990) p.1571.

[23] K. Enami, K. Horii, J. Takahashi: ISIJ International Vol. 29 (1989) p.430.

[24] P. Wollants, M. Debonte, J.R. Roos: Zeitschrift Fur Metallkunde Vol. 70 (1979) p.113.

[25] T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight: Science Vol. 272 (1996) p.90.

[26] J.S.O. Evans, T.A. Mary, A.W. Sleight: Physica B-Condensed Matter Vol. 241 (1998) p.311.

[27] K.N. Melton, O. Mercier: Acta Metall. Vol. 29 (1981) p.393.

[28] J. F. Shackelford, W. Alexander. (Eds. ), CRC materials science and engineering handbook, (CRC Press, Boca Raton, 2001).