Stored Energy and Recrystallization Process

Abstract:

Article Preview

Stored energy plays a crucial role in recrystallization process. One can distinguish two contributions to this energy. The first one is the elastic energy, connected with residual stresses, i.e., with grain-grain interaction. Another part of the stored energy is due to dislocation density, which is mainly localized inside grains. The latter one is considered as a main driving force of recrystallization. However, the stored energy connected with residual stresses can also have some influence on this process. Both types of energy can be determined experimentally and predicted by deformation models. Taking into account both types of the stored energy, some features of recrystallization textures can be explained.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

3335-3340

DOI:

10.4028/www.scientific.net/MSF.539-543.3335

Citation:

A. Baczmanski et al., "Stored Energy and Recrystallization Process", Materials Science Forum, Vols. 539-543, pp. 3335-3340, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.