Sputtered Cu Films Containing Various Insoluble Substances for Advanced Barrierless Metallization

Abstract:

Article Preview

Sputtered Cu films containing various insoluble substances, such as Cu(W2.3), Cu(Mo2.0), Cu(Nb0.4), Cu(C2.1) and Cu(W0.4C0.7), are examined in this study. These films are prepared by magnetron sputtering, followed by thermal annealing. The crystal structure, microstructure, SIMS depth-profiles, leakage current, and resistivity of the films are investigated. Good thermal stability of these Cu films is confirmed with focused ion beam, X-ray diffractometry, SIMS, and electrical property measurements. After annealing at 400°C, obvious drops in resistivity, to ~3.8 μ-cm, are seen for Cu(W) film, which is lower than the other films. An evaluation of the leakage current characteristic from the SiO2/Si metal-oxide-semiconductor (MOS) structure also demonstrates that Cu with dilute tungsten is more stable than the other films studied. These results further indicate that the Cu(W) film has more thermal stability than the Cu(Mo), Cu(Nb), Cu(C), Cu(WC) and pure Cu films. Therefore, the film is suitable for the future barrierless metallization.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

3497-3502

DOI:

10.4028/www.scientific.net/MSF.539-543.3497

Citation:

J.P. Chu and C.H. Lin, "Sputtered Cu Films Containing Various Insoluble Substances for Advanced Barrierless Metallization", Materials Science Forum, Vols. 539-543, pp. 3497-3502, 2007

Online since:

March 2007

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.