The Role of Segregation in InGaAs Heteroepitaxy


Article Preview

We investigated InGaAs layers grown by molecular-beam epitaxy on GaAs (001) with transmission electron microscopy (TEM) and photoluminescence spectroscopy. InGaAs layers with In-concentrations of 16, 25 and 28 % and respective thicknesses of 20, 22 and 23 monolayers were deposited at 535 °C. Island formation is observed for the layer with the highest In-concentration. Inconcentration profiles were obtained from high-resolution TEM images by composition evaluation by lattice fringe analysis. The measured profiles can well be fitted applying the segregation model of Muraki et al. [Appl. Phys. Lett. 61 (1992) 557] and are in excellent quantitative agreement with the photoluminescence peak positions. From our data we conclude that island formation occurs when the amount of Indium in the In-floating layer reaches 1.1±0.2 monolayers indium.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




D. Litvinov et al., "The Role of Segregation in InGaAs Heteroepitaxy", Materials Science Forum, Vols. 539-543, pp. 3540-3545, 2007

Online since:

March 2007




[1] J. Massies, F. Turco, A. Saletes and J.P. Contour: J. Cryst. Growth 80 (1987), pp.307-314.

[2] S. Valeri, A. Di Bona, E. Engeli, S. Bordiga and A. Piccirillo, Thin Solid Films 197 (1991), p.179.

DOI: 10.1016/0040-6090(91)90230-u

[3] P. Offermans, P. M. Koenraad, J. H. Wolter, K. Pierz, M. Roy, and P. A. Maksym, Phys. Rev. B 72, (2005), 165332.

[4] K.R. Evans, R. Kaspi, J.E. Ehret, M. Skowronski, C.R. Jones, J. Vac. Sci. Technol. B 13 (1995), p.1820.

[5] J.M. Garcia, J.P. Silveira, F. Briones, Appl. Phys. Lett. 77 (2000), p.409.

[6] S. Martini, A.A. Quivy, T.E. Lamas, M.J. da Silva, E.C.F. da Silva, J.R. Leite, J. Cryst. Growth 251 (2003), p.101.

[7] J. M. Moison, C. Guille, F. Houzay, F. Barthe, M. Van Rompay, Phys. Rev. B 40 (1989), p.6149.

[8] J.M. Gerard, Appl. Phys. Lett. 61 (1992), p.2096-(2098).

[9] Toyoshima, T. Niwa, J. Yamzaki, A. Okamoto, Appl. Phys. Lett. 63 (1993), p.821.

[10] K. Muraki, S. Fukatsu, Y. Shirakia and R. Ito, Appl. Phys. Lett. 61 (1992), p.557.

[11] M. Larive, J. Nagle, J.P. Landesman, X. Marcadet, C. Mottet, and P. Bois, J. Vac. Sci. Technol. B 11 (1993), p.1413.

[12] Kaspi R, and Evans K R, Appl. Phys. Lett. 67 (1995), p.819.

[13] O. Dehaese, X. Wallart, and F. Mollot, Appl. Phys. Lett. 66 (1995), p.52.

[14] T. Walther, A.G. Culli, D.J. Norris, and M. Hopkinson, Phys. Rev. Lett. 86 (2001), p.2381.

[15] A.G. Cullis, D.J. Norris, T. Walther, M.A. Migiorato, M. Hopkinson, Phys. Rev. B 66, (2002), p.81305(R).

[16] A. Rosenauer, Transmission Electron Microscopy of Semiconductor Nanostructures - An Analysis of Composition and Strain (Heidelberg, Springer), Springer Tracts in Modern Physics 182 (2003).

DOI: 10.1007/3-540-36407-2

[17] E. Piscopiello, A. Rosenauer, A. Passasseo, E.H. Montoya Rossi, G. Van Tendeloo, Phil. Mag. 85 (2005), 3857.

[18] A. Rosenauer, M. Schowalter, F. Glas, Phys. Rev. B 72 (2005), p.085326.

[19] G. Bastard, Phys. Rev. B 24 (1981), p.5693.

[20] E.O. Kane, J. Phys. Chem. Solids 1 (1957), p.249.

[21] PhD thesis J.P. Reithmaier, TU München, (1990).

Fetching data from Crossref.
This may take some time to load.