Development of New Actuators for Flapping Wing Flight


Article Preview

Flying robots with flapping wings are preferred over conventionally fixed or rotational wings in terms of hovering capability for a simple mechanical configuration. Until recently, available actuators for such a robot are limited to (1) a conventional motor with four-bar linkage mechanism or (2) a piezo electric actuator, but none of them could provide enough lift because of low flapping frequency, small stroke angles, and/or frequent mechanical failure. A new actuator capable of generating large stroke angles with high frequency is developed. It consists of an out-runner brushless motor with a modified motor driver attached to a torsion spring. The wing is attached directly on the cap of the motor. A prototype is built and preliminary thrust force measurements are performed. Properties of wing materials suitable for powerful and robust actuators will be discussed. The actuator employed in the present study utilizes resonance oscillation, which leads to high energy efficiency. Further study of wing shape and directional stiffness is needed for generating higher lift capability.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran






D. T. Chung "Development of New Actuators for Flapping Wing Flight", Materials Science Forum, Vols. 539-543, pp. 36-41, 2007

Online since:

March 2007





In order to see related information, you need to Login.

In order to see related information, you need to Login.