Oxidation Effects during High Temperature Deformation of CP Ti Alloy


Article Preview

This work reports the influence of oxidation on the superplasticity of commercially pure titanium at high temperatures. Uniaxial tensile tests were conducted at temperatures in the range 600-800°C with an initial strain rate of 10s-1 to 10s-3. This study shows that oxidization at the surface of the alloy causes oxide film on the surface of commercially pure titanium alloy, and the thickness of oxide film increase with increasing exposure time and temperature. XRD analysis shows that the oxide film consists of TiO2. Because this oxide film is very brittle, it can induce clefts and degrade the ductility of the titanium at high temperatures. The mechanism of the initial clefts was investigated and a model for the cleft initiation and propagation during high temperature tensile test was proposed.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




M. J. Tan et al., "Oxidation Effects during High Temperature Deformation of CP Ti Alloy", Materials Science Forum, Vols. 539-543, pp. 3678-3683, 2007

Online since:

March 2007




[1] F.J. Campideli, H.E.P. Sobrinho, L. Correr, D. Goes and M. Fernando: Dent. Mater. Vol. 19 (2003), p.686.

[2] C.R.F. Azevedo, A.P.D. Santos: Eng. Fail. Anal. Vol. 10 (2003), p.431.

[3] S. Kundu, M. Ghosh, A. Laik, K. Bhanumurthy, G.B. Kale and S. Chatterjee: Mater. Sci. and Eng. Vol. 407A (2005), p.154.

[4] E.W. Collings: The Physical Metallurgy of Titanium Alloys, American Society for Metals, Metals Park, (1984).

[5] J.S. Kim, J.H. Kim, Y.T. Lee, C.G. Park and C.S. Lee: Mater. Sci. and Eng. Vol. 263 A (1999), p.272.

[6] W. Swale, R. Broughton: Mater. Sci. Forum Vol. 447-448, Superplasticity in Advanced Materials: 8th International Conference on Superplasticity in Advanced Materials, ICSAM 2003, 2004, p.239.

[7] R.I. Todd: Mater. Sci. Forum, Vol. 243-245 (1997), p.99.

[8] O.A. Kaibyshev, R.Z. Valiev and A.K. Emaletinov: Physical Status Solid (A), Vol. 90 (1985), p.197.

[9] A.H. Chokshi: Mater. Sci, and Eng. Vol. 234A (1997), p.986.

[10] B. Hidalgo-Prada and A. K. Mukherjee: Scripta Metall. Vol. 19 (1985), p.1235.

[11] J. Pilling: Mater. Sci. and Tech. Vol. 13 (1997), p.1045.

[12] T.G. Nieh, J. Wadsworth and O.D. Sherby: Superplasticity in Metals and Ceramics, Cambridge University Press, (1996).

[13] O.A. Kaibyshev: Superplasticity of Alloys, Intermetallides and Ceramica, Springer-Verlag, (1992).

[14] H.L. Du, P.K. Datia, D.B. Lewis and J.S. Burnell-Gray: Corro. Sci. Vol. 36 (1994), p.631.

[15] S.N. Patankar, Y.T. Kwang and Tan Ming Jen: J. Mater. Proc. Tech. Vol. 112 (2001), p.24.

[16] S. Frangini, A. Mignone and F.D. Riccardis: J. Mater. Sci. Vol. 29 (1994), p.714.

[17] R.W. Evans, R.J. Hull and B. Wilshire: J. Mater. Proc. Tech. Vol. 56 (1996), p.492.

Fetching data from Crossref.
This may take some time to load.