Residual Strain Measurements in a Friction-Stir Processed AZ31B Magnesium Alloy Using Neutron Diffraction


Article Preview

Residual strain profiles in friction-stir processed (FSP) AZ31B magnesium-alloy plates were measured using neutron diffraction. Two different specimens were prepared to investigate the influences of the tool shoulder and the tool pin on the residual-strain profiles: (Case 1) a plate processed with both the stirring pin and tool shoulder, i.e., a regular FSP plate subjected to both the plastic deformation and frictional heating, and (Case 2) a plate processed only with the tool shoulder, i.e., subjected mainly to the frictional heating. The results show that the strain profiles of both cases are qualitatively quite similar. The longitudinal strain is mainly tensile with its maximum near the bead of the FSP plate. On the other hand, the transverse and normal strains are mildly compressive in both Cases 1 and 2.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




W. Woo et al., "Residual Strain Measurements in a Friction-Stir Processed AZ31B Magnesium Alloy Using Neutron Diffraction", Materials Science Forum, Vols. 539-543, pp. 3795-3800, 2007

Online since:

March 2007




[1] M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingle: Mater. Trans. A Vol. 29 (1998), p. (1955).

[2] P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney: Scripta Mater. Vol. 44 (2001), p.61.

[3] Z. Y Ma, R.S. Mishra, and M.W. Mahoney: Acta Mater. Vol. 50 (2002), p.4419.

[4] J.A. Esparza, W.C. Davis, E.A. Trillo, and L.E. Murr: J. Mater. Sci. Lett. Vol. 21 (2002), P. 917.

[5] D. Zhang, M. Suzuki, and K. Maruyama: Scripta Mater. Vol. 52 (2005), p.899.

[6] Y.S. Sato, S.H.C. Park, A. Matusunaga, and H. Kokawa: J. Mat. Sci. Vol. 40 (2005), p.637.

[7] S.H.C. Park, Y.S. Sato, and H. Kokawa: Scripta Mater. Vol. 49 (2003), p.161.

[8] S.H.C. Park, Y.S. Sato, and H. Kokawa: Metal. Mater. Trans. A Vol. 34 (2003), p.987.

[9] W.B. Lee, Y. M. Yeon, and S. B. Jung: Mater. Sci. Tech. Vol. 44 (2004), p.785.

[10] C.I. Chang, C.J. Lee, and J.C. Huang: Scripta Mater. Vol. 51 (2004), p.509.

[11] W. Woo, H. Choo, D.W. Brown, P.K. Liaw, and Z. Feng: Scripta Mater. Accepted.

[12] ASM Speciality Handbook: Magnesium and Magnesium Alloys (Materials Park, Ohio: ASM international 1999).

[13] S.R. Agnew, C.N. Tomé CN, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater. Vol. 48 (2003), p.1003.

[14] K. Masubuchi: Analysis of Welded Structures (Pergamon, New York 1980).

[15] P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Tech. Vol. 17 (2001), p.366.

[16] A.P. Reynolds, W. Tang, T.G. Herold, H. Prask, Scripta Mater. 48 (2003) 1289-1294.

[17] C.G. Windsor: Pulsed Neutron Scattering (Taylor and Francis, London 1981).

[18] M.A. M Bourke, D.C. Dunand, and E. Ustundag: Appl. Phys. A Vol. 74 (2002), p. S1707.

[19] A.C. Larson and R.V. Von Dreele, General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report 2004; LAUR 86-748).

[20] D.W. Brown, R. Varma, M.A.M. Bourke, T. Ely, T.M. Holden, and S. Spooner: ECRS 6: Sci. Forum Vol. 404-4 (2002), p.741.

[21] W. Woo, H. Choo, D.W. Brown, Z. Feng, P.K. Liaw, S.A. David, C.R. Hubbard, and M.A.M. Bourke: Appl. Phys. Lett. Vol. 86 (2005), p.231902.

[22] M. Peel, A. Steuwer, M. Preuss, and P.J. Withers: Acta Mater. Vol. 51 (2003), p.4791.

[23] H. Schmidt, J. Hattel, and J. Wert: Model. Simul. Mater. Sci. Eng. Vol. 12 (2004), p.143.