Microstructure of SiC/Cu Interface by Pulsed Electric-Current Bonding

Abstract:

Article Preview

Pulsed electric-current sintering (PECS) was applied to the bonding of SiC (pressureless-sintered silicon carbide) to Cu (oxygen-free copper) using a mixture of Cu and Ti powders as an intermediate layer. The influences of the intermediate powders on the bond strength of the joint were investigated by observation of the microstructure. The bonding was carried out at carbon-die temperatures from 973 to 1173 K at a bonding pressure of 10 MPa for 3.6 ks. The application of intermediate layers of 100% Ti, 95% Ti + 5% Cu, and 5% Ti + 95% Cu remarkably improved the bond strength as compared with direct bonding without an intermediate powder. SEM observations of the joint with the intermediate powders revealed that a Cu solid-solution layer, a TiC layer, and a Ti5Si3 layer had covered most of the interface, similar to those observed in the friction-bonded and pulsed-electric current bonded joints of SiC to Cu in which the application of a Ti foil as an intermediate layer remarkably improved the bond strength.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

3883-3887

Citation:

A. Nishimoto et al., "Microstructure of SiC/Cu Interface by Pulsed Electric-Current Bonding", Materials Science Forum, Vols. 539-543, pp. 3883-3887, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] K. Hamada, M. Kureishi, M. Ueda, T. Enjo and K. Ikeuchi: Quart. J. Jpn. Weld. Soc. Vol. 3 (1985), p.483.

[2] S. Morozumi, M. Endo, M. Kikuchi and K. Hamajima: J. Mater. Sci. Vol. 20 (1985), p.3976.

[3] T. Yano, H. Suematsu and T. Iseki: J. Mater. Sci. Vol. 23 (1988), p.3362.

[4] M. Naka, J. Feng and J.C. Schuster: Quart. J. Jpn. Weld. Soc. Vol. 14 (1996), p.338.

[5] C. Iwamoto, H. Ichinose and S.I. Tanaka: Philos. Mag. A Vol. 79 (1999), p.85.

[6] M. Maeda, O. Igarashi, T. Shibayanagi and M. Naka: Mater. Trans. Vol. 44 (2003), p.2701.

[7] S. Morozumi: Bulletin of the Japan Institute of Metals Vol. 29 (1990), p.880.

[8] M. Tokita: J. Soc. Powder Technol. Jpn. Vol. 30 (1993), p.790.

[9] A. Nishimoto, K. Nakao, K. Akamatsu and K. Ikeuchi: J. Japan Inst. Metals Vol. 67 (2003), p.432.

[10] Y. Fukaya, Y. Okumoto, A. Ikuta, H. Kuroki, K. Shinozaki and T. Kobayashi: Quart. J. Jpn. Weld. Soc. Vol. 19 (2001), p . 336.

[11] H. Fujiwara, M. Tokuhara, K. Ameyama and S. Akishita: J. Soc. Mat. Sci. Japan Vol. 54 (2005), p.470.

[12] K. Nishimoto, K. Saida and R. Tsuduki: J. Japan Inst. Metals Vol. 65 (2001), p.288.

[13] O. Ohashi, N. Yamaguchi and Y. Kayanuma: J. Jpn. Soc. Powder Powder Metall. Vol. 48 (2001), p.1000.

[14] H. Furuhata and O. Ohashi: J. Japan Inst. Metals Vol. 67 (2003), p.448.

[15] H. Furuhata, N. Chikui and O. Ohashi: J. Japan Inst. Metals Vol. 68 (2004), p.511.

[16] T. Nakamura, K. Hayakawa, S. Tanaka, H. Imaizumi and Y. Nakagawa: Mater. Trans. Vol. 46 (2005), p.292.

[17] T. Nagaoka, K. Mizuuchi, M. Sugioka and M. Fukusumi: J. Japan Inst. Metals Vol. 69 (2005), p.727.

[18] M. Ishikawa, T. Fujimori, H. Karasawa, Y. Miyasaka, S. Ota, N. Hitomi, Y. Funahashi and K. Ueno: Quart. J. Jpn. Weld. Soc. Vol. 23 (2005), p . 344.

[19] H.K. Lee and J.Y. Lee: J. Mater. Sci. Vol. 31 (1996), p.4133.

[20] S. Kato, T. Yano and T. Iseki: J. Ceram. Soc. Japan Vol. 101 (1993), p.325.

[21] F. Tamai and M. Naka: Quart. J. Jpn. Weld. Soc. Vol. 14 (1996), p.333.

[22] A. Nishimoto, M. Ando, M. Takahashi, M. Aritoshi and K. Ikeuchi: Mater. Trans., JIM Vol. 41 (2000), p.1636.

[23] A. Nishimoto, M. Ando, M. Takahashi, M. Aritoshi, K. Akamatsu and K. Ikeuchi: J. Japan Inst. Metals Vol. 67 (2003), p.547.

[24] T. Iseki, T. Yano and Y.S. Chung: J. Ceram. Soc. Japan Vol. 97 (1989), p.710.

Fetching data from Crossref.
This may take some time to load.