Precipitation of Niobium Carbonitrides: Chemical Composition Measurements and Modeling


Article Preview

High Resolution Transmission Electron Microscope and Electron Energy Loss Spectroscopy and have been used to characterize the structure and chemical composition of niobium carbonitrides in the ferrite of a Fe-Nb-C-N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed sub-stoichiometric niobium carbonitrides. In order to predict the chemical composition of these precipitates, a thermodynamical formalism has been developed to evaluate (i) the nucleation and growth rates (classical nucleation theory) and (ii) the chemical composition of nuclei and existing precipitates. A model based on the numerical resolution of former equations, is used to compute precipitates size distribution evolution at a given temperature. The predicted compositions are in very good agreement with experimental results.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




M. Perez et al., "Precipitation of Niobium Carbonitrides: Chemical Composition Measurements and Modeling", Materials Science Forum, Vols. 539-543, pp. 4196-4201, 2007

Online since:

March 2007




[1] E. J. Palmiere, C. I. Garcia and A. J. Deardo, Metall. Mater. Trans. 27A-4 (1996) pp.951-960.

[2] C. Fossaert, G. Rees, T. Maurickx and H. K. Badeshia, Metall. Mater. Trans. 26A (1995) pp.21-30.

[3] W. M. Rainforth, M. P. Black and F. Hofer, Acta Mat. 50 (2002) pp.735-747.

[4] R. Kampmann and R. Wagner, Second phase precipitation in Materials Science and Technology: A Comprehensive Treatment, VCH, Weinheim, vol. 5 (1991) pp.213-304.

[5] H. R. Schercliff and M. F. Ashby, Acta Mater. 38 (1990) pp.1789-1812.

[6] A. Deschamps, Y. Brechet, Acta Mater. 47 (1999) pp.293-305.

[7] O. R. Myhr, O. Grong, Acta Mater. 48 (2000) pp.1605-1615.

[8] M. Perez, A. Deschamps, Mater. Sci. Eng. A360, (2003) pp.214-219.

[9] P. Maugis and M. Gouné, Acta Mater. 53 12 (2005) pp.3359-3367.

[10] F. Hofer, P. Warbichler, B. Buchmayr and B. Kleber, J. of Micr. 184 3(1996) pp.163-174.

[11] A. J. Craven, K. He, L. A. Gravie and T. N. Baker, Acta Mater. 48, (I) pp.3857-3868 and (II) pp.3869-3878.

[12] J. A. Wilson and A. J. Craven, Ultramicroscopy 94 (2003) pp.197-207.

[13] M. Beres, T. E. Weirich, K. Hulka and J. Mayer, Steel Research Int. 75 (2004) pp.753-758.

[14] C. P. Scott, D. Charleix and P. Barges, Scripta Mater. 47 (2002) 845-849.

[15] E. Courtois, PhD Thesis, INSA-Lyon, France (2005).

[16] E. Courtois, T. Epicier and C. Scott, Micron, In press.

[17] E. Bemont, PhD Thesis, University of Rouen, France (2003).

[18] M. Hillert and L. I. Staffansson, Acta Chemica Scandinavia 24 (19970) pp.3618-3626.

[19] D. Acevedo and M. Perez, Computational Mater. Sc. Submitted.

[21] T. Gladmann, The physical Metallurgy of Microalloyed Steels, Inst. Mater., London (1997).

[22] R. C. Hudd, A. Jones and M. N. Kale, J. Iron Steel Inst. 209 (1971) p.121.

Fetching data from Crossref.
This may take some time to load.