Microsegregation Effect of Copper in Solidification of A356 Alloy

Abstract:

Article Preview

In this study, the microsegregation effect of copper during solidification of A356.2 aluminum casting alloy was evaluated by using solidification simulation and a series of experimental works. Electron probe micro analysis (EPMA) and the computational simulation revealed clearly that copper as a solute element segregates during solidification and it becomes more significant as the solidification approaches its completion. This microsegregation effect of copper is due to accumulated copper solute ahead of the eutectic interface during solidification. Consequently, the presence of a higher content of copper in A356.2 aluminum casting alloy causes influence on the solidification characteristics of the alloy and forms copper enriched phases at the last region to solidify in the microstructures.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

452-456

Citation:

J. I. Cho et al., "Microsegregation Effect of Copper in Solidification of A356 Alloy", Materials Science Forum, Vols. 539-543, pp. 452-456, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] L. F. Mondolfo: Aluminum Alloys: Structure and Properties (Butter Worths 1976).

[2] G.A. Edwards, G.K. Sigworth, C.H. Cáceres, D.H. St. John and J. Barresi: AFS Transactions, Vol. 105 (1997), pp.809-818.

[3] C.H. Cárceres, M.B. Djurdjevic, T.J. Stockwell and J.H. Sokolowski: Scripta Materialia, Vol. 40, no. 5 (1999), pp.631-637.

[4] J. Lacaze and G.R.J. Lesoult: Mater. Sci. Eng. A, Vol. 173 (1993), pp.119-122.

[5] J. Lacaze and G.R.J. Lesoult: ISIJ Int., Vol. 35 (1995), pp.658-664.

[6] F. -Y. Xie, T. Kraft, Y. Zuo, C. -H. Moon and Y.A. Chang: Acta Mater., Vol. 47 (1999), pp.489-500.

[7] X. Yan, Thermodynamic and Solidification Modeling Coupled with Experimental Investigation of the Multicomponent Aluminum Alloys, Ph. D Thesis, University of Wisconsin-Madison (2001).

[8] T. Kraft, M. Rettenmayr and H.E. Exner: Model. Simul. Mater. Sci. Eng., Vol. 4 (1996), p.161177.

[9] E. Scheil, Zeitschrift fur Metallkde, Vol. 34 (1942), pp.70-72.

[10] D.H. Kirkwood, Mater. Sci. Eng., Vol. 65, No. 1 (1984), pp.101-109.

[11] G. Heiberg, K. Nogita, M. Raanes, A. L. Dons, A. K. Dahle, and L. Arnberg, AFS Transactions, Vol. 110 (2002).

[12] R. Mackay, J. H. Sokolowski, R. Hasenbusch and W. J. Evans, AFS Transactions, Vol. 111, (2003).

Fetching data from Crossref.
This may take some time to load.