Optimized Thermomechanical Treatment for Strong and Ductile Martensitic Steels

Abstract:

Article Preview

In this study the effect of thermomechanical treatment on the microstructure of austenite and martensite and the mechanical properties of a medium carbon silicon chromium spring steel with different levels of impurities is investigated. Results are presented for conventional heat treatment and for thermomechanical treatment (TMT). Compared to conventionally heat treated samples austenite deformation improves strength and ductility. Thermomechanically treated samples are not prone to embrittlement by phosphorous. TMT influences the shape and distribution of carbides within the matrix and at prior austenite grain boundaries. It is shown that utilization of TMT is beneficial for increasing the ultimate tensile strength to levels above 2200 MPa and at the same time maintaining the ductility obtained at strength levels of 1500 MPa by conventional heat treatment. The endurance limit is increased and embrittlement does not occur.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

4526-4531

DOI:

10.4028/www.scientific.net/MSF.539-543.4526

Citation:

A. A. Barani and D. Ponge, "Optimized Thermomechanical Treatment for Strong and Ductile Martensitic Steels", Materials Science Forum, Vols. 539-543, pp. 4526-4531, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.