Optimized Thermomechanical Treatment for Strong and Ductile Martensitic Steels


Article Preview

In this study the effect of thermomechanical treatment on the microstructure of austenite and martensite and the mechanical properties of a medium carbon silicon chromium spring steel with different levels of impurities is investigated. Results are presented for conventional heat treatment and for thermomechanical treatment (TMT). Compared to conventionally heat treated samples austenite deformation improves strength and ductility. Thermomechanically treated samples are not prone to embrittlement by phosphorous. TMT influences the shape and distribution of carbides within the matrix and at prior austenite grain boundaries. It is shown that utilization of TMT is beneficial for increasing the ultimate tensile strength to levels above 2200 MPa and at the same time maintaining the ductility obtained at strength levels of 1500 MPa by conventional heat treatment. The endurance limit is increased and embrittlement does not occur.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




A. A. Barani and D. Ponge, "Optimized Thermomechanical Treatment for Strong and Ductile Martensitic Steels", Materials Science Forum, Vols. 539-543, pp. 4526-4531, 2007

Online since:

March 2007




[1] G. Krauss, C.J. McMahon, Jr.: Martensite (ASM International, USA 1992).

[2] R.M. Horn, R.O. Ritchie, Met. Trans. A 9A (1978), p.1039.

[3] J.M. Capus, J Iron Steel Inst. 201 (1963), p.53.

[4] C.L. Briant, S.K. Banerji, Met. Trans. A 10A (1979), p.1729.

[5] C.L. Briant, S.K. Banerji, Met. Trans. A 10A (1979), p.123.

[6] A. Peters , R. Kaspar, La Revue de Métallurgie-CIT (1997), p.939.

[7] M. Wettlaufer, R. Kaspar, Steel Research 71 no. 9 (2000), p.357.

[8] M. Wettlaufer, R. Kaspar, Steel Research 71 no. 9 (2000), p.362.

[9] A. Peters, R. Kaspar: Werkstoffe für die Verkehrstechnik (DGM-Informationsgesellschaft Verlag, Germany, l997).

[10] A. Peters: Verbesserung der mechanischen eigenschaften von Federstählen durch Mikrolegierung und thermomechansiche Behandlung (Shaker Verlag, Germany 1997).

[11] M. Wettlaufer: Einflussmöglichkeiten auf die Wirkungen von Begleitelementen in hochfesten Federstählen (Shaker Verlag, Germany 2000).

[12] H. Dziemballa, L. Manke: Steel, Future for the Automotive Industry (Verlag Stahleisen GmbH, Germany 2005).

[13] W.J. Nam, Ch.S. Lee, D.Y. Ban, Mat. Sci. & Eng A289 (2000), p.8.

[14] R. Kaspar, O. Pawelski, Materialprüfung 31 (1989), p.14.

[15] O. Pawelski, U. Rüdiger, R. Kaspar, Stahl und Eisen 98 (1978), p.181.

[16] F. Li, A. Ardehali Barani, D. Ponge, D. Raabe, steel research, in press.

[17] K. -E. Hensger, M. L. Bernstein: Thermomechanische Veredelung von Stahl (Deutscher Verlag für Grundstoffindustrie, Democratic German Republic 1984).

Fetching data from Crossref.
This may take some time to load.