Study of Ultra-Long Life Fatigue of High Strength Steel with Duplex-Phase of Carbide-Free Bainite and Martensite


Article Preview



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




W. L. Cui et al., "Study of Ultra-Long Life Fatigue of High Strength Steel with Duplex-Phase of Carbide-Free Bainite and Martensite", Materials Science Forum, Vols. 539-543, pp. 4532-4537, 2007

Online since:

March 2007




[1] Masuda C, Nishijima S, Tanaka Y. Relationship between fatigue strength and hardness for high strength steels. Trans. JSME, 52A: PP. 847~852, (1986).

[2] Naito T, Ueda H, Kikuchi M. Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface. Metal Trans., 15A: PP. 1431~1436, (1984).

DOI: 10.1007/bf02648572

[3] Bathias C. There is no infinite fatigue life in metallic materials. Fatigue Fract. Engng. Mater. Struct., 22: PP. 559~566, (1999).

DOI: 10.1046/j.1460-2695.1999.00183.x

[4] Umezawa, Nagai K. Subsurface crack generation in high-cycle fatigue for high strength alloys. ISIJ International, 37(12): PP. 1170~1179, (1997).

DOI: 10.2355/isijinternational.37.1170

[5] Kanazawa K, Nishijima S. Fatigue fracture of low alloy steel at ultra-high-cycle region under elevated temperature condition. Zairyo/Journal of the Society of Material Science, Japan, 46(12): PP. 1396~1401, (1997).

DOI: 10.2472/jsms.46.1396

[6] Q.Y. Wang , C. Bathias , N. Kawagoishi , Q. Chen. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. International Journal of Fatigue, 24, 1269~1274 , (2002).

DOI: 10.1016/s0142-1123(02)00037-3

[7] Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of super-long fatigue failure in steels. Fatigue Fract. Engng. Mater. Struct., 22: PP. 581~590, (1999).

[8] Sakai T, Sato Y, Oguma N. Characteristics S-N properties of high Carbon chromium bearing steel under axial loading in long-life fatigue. Fatigue Fract. Engng. Mater. Struct., 25: PP. 765~773, (2002).

DOI: 10.1046/j.1460-2695.2002.00574.x

[9] Ochi Y, Matsumura T, Masaki K, et al. High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue Fract. Engng. Mater., Struct., 25: PP. 823~830, (2002).

DOI: 10.1046/j.1460-2695.2002.00575.x

[10] Shiozawa K, LU Liantao, Ishihara S. S-N curve characteristics and subsurface crack initiation behaviors in ultra-long life fatigue of a high Carbon-chromium bearing steel. Fatigue Fract. Engng. Mater. Struct., 24: PP. 781~790, (2001).

DOI: 10.1046/j.1460-2695.2001.00459.x

[11] Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract. Engng. Mater. Struct., 25 : PP. 735~ 746, (2002).

[12] Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for high strength low-alloy steel at 100 Hz, 600Hz and 20 kHz. Scripta Mater., 46(2): PP. 157~162, (2002).

DOI: 10.1016/s1359-6462(01)01213-1

[13] Shu Delin, Mechanical properties of metals. Mechanical Industry Press. PP. 84~85, (1999).

Fetching data from Crossref.
This may take some time to load.