Thermomechanical Treatments of Ultrahigh Carbon Steels and Optimal Microstructures to Improve Toughness

Abstract:

Article Preview

Thermomechanical processing allows the attainment of spheroidized microstructures that show improved mechanical properties. In this work, a thermomechanical processing route consisting of two steps was developed for two ultrahigh carbon steels (UHCS) containing 1.3 and 1.5%C. This route develops structures of fine spheroidized cementite particles in a fine-grained ferrite matrix. Spheroidized microstructures are formed by eutectoid carbide particles in the UHCS- 1.3C and by proeutectoid and eutectoid carbide particles in the UHCS-1.5C. In the latter steel, the proeutectoid carbide particle size is larger than the eutectoid carbide particle size. The carbide size distribution remains basically constant with austenitizing temperature for both steels. Plane-strain fracture toughness of spheroidized UHCS-1.3C is higher than for UHCS-1.5C, about 80 vs 40 MPa m1/2. These values do not vary significantly with austenitizing temperature which is attributed to the constancy of the mean proeutectoid and eutectoid carbide size.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

4826-4831

DOI:

10.4028/www.scientific.net/MSF.539-543.4826

Citation:

M. Carsí et al., "Thermomechanical Treatments of Ultrahigh Carbon Steels and Optimal Microstructures to Improve Toughness", Materials Science Forum, Vols. 539-543, pp. 4826-4831, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.