Static Strain Aging in Cold Rolled Metastable Austenitic Stainless Steels


Article Preview

Transformation of austenite to martensite during cold rolling operations is widely used to strengthen metastable austenitic stainless steel grades. Static strain aging (SSA) phenomena at low temperature, typically between 200°C and 400°C, can be used for additional increase in yield strength due to the presence of α’-martensite in the cold rolled metastable austenitic stainless steels. Indeed, SSA in austenitic stainless steel affects mainly in α’-martensite. The SSA response of three industrial stainless steel grades was investigated in order to understand the aspects of the aging phenomena at low temperature in metastable austenitic stainless steels. In this study, the optimization of, both, deformation and time-temperature parameters of the static aging treatment permitted an increase in yield strength up to 300 MPa while maintaining an acceptable total elongation in a commercial 301LN steel grade. Deformed metastable austenitic steels containing the “body-centered” α’-martensite are strengthened by the diffusion of interstitial solute atoms during aging at low temperature. Therefore, the carbon redistribution during aging at low temperature is explained in terms of the microstructural changes in austenite and martensite.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




P. Antoine et al., "Static Strain Aging in Cold Rolled Metastable Austenitic Stainless Steels", Materials Science Forum, Vols. 539-543, pp. 4891-4896, 2007

Online since:

March 2007




[1] R. P. Reed and C. J. Guntner: Transactions of the Metallurgical Society of AIME, Vol. 230 (1964), pp.1713-1720.

[2] S. S. Hecker, M. G. Stout, K. P. Staudhammer and J. L. Smith: Metallurgical Transactions A, Vol. 13A (1982), pp.619-625.

[3] G. B. Olson and M. Cohen: in Martensitic transformation as a deformation process, New Orleans, Louisiana; The Metallurgical Society of AIME (1986), pp.367-390.

[4] R. W. Rathbun, D. K. Matlock, J. G. Speer: Scripta Materialia, Vol. 42 (9) (2000), p.887891.

[5] J. Talonen, P. Nenonen and H. Hänninen: Steel Grips 2, Suppl. High Nitrogen Steel, (2004), pp.113-22.

[6] T. Angel: J. Iron Steel Inst., London, Vol. 177 (1954), p.165.

[7] J. Talonen, H. Hänninen and P. Aspegren: Materials Science and Technology, Vol. 20 (12) (2004), pp.1506-1512.

[8] J. Nelson and D. Riley: Proceedings of the Physical Society (1945), pp.160-177.

[9] P. Lacombe, B. Baroux and G. Beranger: Stainless steels, Les éditions de Physique (1993), p.565.

[10] S. P. Hannula, M. A. Korhonen, and C. Y. Li: Metallurgical Transactions A, Vol. 17A (October 1986), pp.1757-67.

[11] K. P. Staudhammer, C. E. Frantz and S. S. Hecker: Plenum Publishing Corporation, chapter 7 (1981), p.91.

[12] L. E. Murr, K. P. Staudhammer and S. S. Hecker: Metallurgical Transactions A; Vol. 13A (April 1982), pp.627-635.

[13] T. Waterschoot, A. K. De, S. Vandeputte, B. C. De Cooman: Metallurgical and Materials Transactions A, Vol. 34A (3) (2003).