New Materials and Construction Methods for Multi-Material-Design, Lightweight Construction and Modularity in Future Vehicle Concepts


Article Preview

Besides reducing fuel consumption, the chief motivating factor behind the development of new vehicle structures is the desire to decrease climate-affecting emissions. One approach to addressing this involves reducing the vehicle mass and, as such, the various strategies relating to lightweight construction. Various methods of lightweight construction are used as a basis for deriving the technically relevant criteria for designs and material concepts. The work conducted in this field today centres around the synthesis of construction method and material development with the objective of devising a multi-material-design [1, 2]. Modularisation is an economic approach aimed at shaping the diversification of the vehicle concepts and implementing this effectively [3]. As a result of hybrid and later fuel cell drives, the requirements on the vehicle concepts will continue to grow in future. Modularisation also sometimes opposes the striving for a high level of integration. The modular lightweight concept of the DLR aims at designing powertrain evolutions in a scalable and cost-efficient manner and in a way that retains the concept flexibility or, in some cases, even increases this. These approaches lead to the strategy known as “hybrid3”. This strategy not only involves matching different materials and various construction methods with each other, but also taking account of the integration of functional effects. This entails, for example, optimising the design of thin-walled structural components in terms of their vibratory or acoustic properties with structure- integrated, active materials. Further examples of the approach with “hybrid3” effects could be selectable surfaces or integrated energy conversion. The various development directions are depicted in the form of a roadmap and discussed on the basis of forward-looking examples from the field of vehicle construction.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




H. E. Friedrich and G. Kopp, "New Materials and Construction Methods for Multi-Material-Design, Lightweight Construction and Modularity in Future Vehicle Concepts", Materials Science Forum, Vols. 539-543, pp. 51-57, 2007

Online since:

March 2007




[1] Timm, H.: Entwicklungsstrategien für wirtschaftlichen Leichtbau in Mischbauweisen, 8. Dresdner Leichtbausymposium 2004, Dresden, (2004).

[2] Friedrich, H. E.: Leichtbau und Werkstoffinnovationen im Fahrzeugbau, ATZ, Vol. 3, pp.258-266 (2002).

DOI: 10.1007/bf03224396

[3] Krusche, T., Leyers, J., Oehmke, T. and Parr, T.: Bewertung von Modularisierungsstrategien für unterschiedliche Fahrzeugkonzepte am Beispiel des Vorderwagens, ATZ, Vol. 10, pp.928-933, (2004).

DOI: 10.1007/bf03221667

[4] Goede, M.; Ferkel, H., Stieg, J. and Dröder, K.: Mischbauweisen Karosseriekonzepte - Innovationen durch bezahlbaren Leichtbau, 14. Aachner Kolloquium Fahrzeug- und Motorentechnik, Aachen, (2005).

[5] Bechtold, M.: FVK-Rohbau für Hochleistungssportwagen - Mercedes-Ben SLR MCLaren, 'Vison Kunststoffkarosserie 2010, Bad Nauheim, (2004).

[6] Friedrich, H. E. and Kopp, G.: Werkstofftechnische Innovationen für die Fahrzeugkonzepte der Zukunft, Handelsblatt-Tagung, München, (2005).

[7] Krause, W.; Geiger, O.; Henning, F.; Eyerer, P.: Development of a Technology for Large Scale Production of Continuous Fiber Reinforced Thermoplastic Composites, SPE-Conference, Boston, (2005).

[8] Friedrich, H. E.: Werkstofftechniken als Treiber von Innovationen im Automobilbau, Composites in Automotive und Aerospace, 1. Materialica Kongress, München, (2005).

Fetching data from Crossref.
This may take some time to load.