Biofunctional Materials for Nerve Regeneration


Article Preview

Most biomaterials widely used in nerve regeneration are either inert or modified with ECM proteins or their epitopes. Neurotransmitters play a key role in neuronal development and function. Thus we decided to investigate the feasibility of using neurotransmitters to create biofunctional materials that actively engage nerve cells to achieve functional restoration after injury of the nervous system. Our data indicated that a properly designed biodegradable polymer with dopamine functional groups was more capable of promoting neurite growth. Such biofunctional materials can potentially provide a new strategy for nerve regeneration.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




Y. M. Kim et al., "Biofunctional Materials for Nerve Regeneration", Materials Science Forum, Vols. 539-543, pp. 547-550, 2007

Online since:

March 2007




[1] G. R. Evans, Semin. Surg. Oncol. 2000, 19, 312-318.

[2] G. Lundborg, Nerve Injury and Repair. Longman Group, UK: New York, (1988).

[3] S. E. Mackunnon; A. L. Dellon, Surgery of the Peripheral Nerve. Thieme Med. Publ.: New York, (1988).

[4] J. G. Boyd; R. Doucette; M. D. Kawaja, FASEB J. 2005, 19, 694-703.

[5] D. J. Bryan; A. H. Holway; K. K. Wang; A. E. Silva; D. J. Trantolo; D. Wise; I. C. Summerhayes, Tissue Eng. 2000, 6, 129-138.

[6] T. Hadlock; C. Sundback; D. Hunter; M. Cheney; J. P. Vacanti, Tissue Eng. 2000, 6, 119-127.

[7] C. E. Schmidt; V. R. Shastri; J. P. Vacanti; R. Langer, Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 8948-8953.

[8] R. F. Valentini; T. G. Vargo; J. A. Gardella, Jr.; P. Aebischer, Biomaterials 1992, 13, 183-190.

[9] A. B. Sanghvi; K. P. Miller; A. M. Belcher; C. E. Schmidt, Nat. Mater. 2005, 4, 496-502.

[10] G. A. Silva; C. Czeisler; K. L. Niece; E. Beniash; D. A. Harrington; J. A. Kessler; S. I. Stupp, Science 2004, 303, 1352-1355.

[11] J. C. Schense; J. Bloch; P. Aebischer; J. A. Hubbell, Nature Biotechnology 2000, 18, 415-419.


[12] Y. Luo; M. S. Shoichet, Nat. Mater. 2004, 3, 249-253.

[13] N. Resnick; H. Yahav; A. Shay-Salit; M. Shushy; S. Schubert; L. C. Zilberman; E. Wofovitz, Prog. Biophys. Mol. Biol. 2003, 81, 177-199.


[14] M. P. Mattson, Brain Res. 1988, 472, 179-212.

[15] G. Filogamo; P. C. Marchisio, Neurosci. Res. 1971, 4, 29-64.

[16] N. Grigoriadis; M. Albani; C. Simeonidou; O. Guiba-Tziampiri, Dev. Brain Res. 2004, 153, 79.

[87] [17] R. E. Zigmond; Y. Sun, Ann. N. Y. Acad. Sci. 1997, 814, 181-197.

[18] T. Hokfelt; X. Zhang; Z. Wiesenfeld-Hallin, Trends Neurosci. 1994, 17, 22-30.

[19] R. E. van Kesteren; G. E. Spencer, Rev. Neurosci. 2003, 14, 217-231.

[20] M. Asanuma; I. Miyazaki; N. Ogawa, Neurotox. Res. 2003, 5, 165-176.

[21] A. H. Stokes; T. G. Hastings; K. E. Vrana, J. Neurosci. Res. 1999, 55, 659-665.

[22] L. A. Sombers; T. L. Colliver; A. G. Ewing, Ann. N. Y. Acad. Sci. 2002, 971, 86-88.

[23] H. Kawakami; K. Hiraka; S. Nagaoka; Y. Suzuki; M. Iwaki, J. Artif. Organs 2004, 7, 83-90.

[24] X. Wang; B. Jin; X. Lin, Anal. Sci. 2002, 18, 931-933.

[25] B. Li; Y. Ma; S. Wang; P. M. Moran, Biomaterials 2005, 26, 1487-1495.

[26] K. Kato; A. Utani; N. Suzuki; M. Mochizuki; M. Yamada; N. Nishi; H. Matsuura; H. Shinkai; M. Nomizu, Biochemistry 2002, 41, 10747-10753.


[27] Y. Wang; G. Ameer; B. Sheppard; R. Langer, Nature Biotechnology 2002, 20, 602-606.