Carbon, Nitrogen and Hydrogen in Steel: Similarities and Differences in their Effect on Structure and Properties


Article Preview

Interstitials N, C and H in steels are compared in terms of their effect on the electronic structure and stacking fault energy, atomic distribution, phase transformations and precipitation, mobility of dislocations, mechanisms of deformation, strengthening and fracture. It is shown that the observed similarities and differences are essentially controlled by the decrease of the electron state density at the Fermi level of the iron due to carbon and its increase due to nitrogen and hydrogen. The increase in the concentration of vacancies with increasing content of interstitials and its possible role in mechanical properties are considered. The nature of nitrogen- and hydrogenincreased localized plasticity of austenitic steels is discussed and some consequences for their fracture are analyzed.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




V. G. Gavriljuk, "Carbon, Nitrogen and Hydrogen in Steel: Similarities and Differences in their Effect on Structure and Properties", Materials Science Forum, Vols. 539-543, pp. 58-65, 2007

Online since:

March 2007




[1] V.G. Gavriljuk, H. Berns: High Nitrogen Steels (Springer, Berlin, Germany 1999).

[2] H. Berns, V.A. Duz', R. Ehrhardt, V.G. Gavriljuk, A.V. Tarasenko: Metal Physics and Advanced Technologies 15 (1995), p.561.

[3] H. Thier, A. Bäumel, E. Schmidtmann: Arch. Eisenhüttenw. Vol. 40 (1969), p.333.

[4] H. Berns, V.A. Duz', R. Ehrhardt, V.G. Gavriljuk, Yu.N. Petrov, V.A. Tarasenko: Z. Metallkd. Vol. 88 (1997), p.109.

[5] J. Frehser, Ch. Kubisch: Berg und Hüttenmännische Monatshefte Vol. 108 (1963), p.369.

[6] R.L. Tobler, D. Meyn: Metall. Trans. Vol. 19A (1988), p.1626.

[7] P.J. Uggowitzer, N. Paulus, M.O. Speidel: Application of Stainless Steels'92, H. Nordberg, J. Börklund J (Eds), The Institute of Metals ASM Intern, Stockholm, Sweden, 1992, p.62.

[8] Y. Tomota, Y. Xia, K. Inoue: Acta Mater. Vol. 46 (1998), p.1577.

[9] H.K. Birnbaum, P. Sofronis: Mater. Sci. & Eng. Vol. A176 (1994), p.191.

[10] V.G. Gavriljuk, B.D. Shanina, N.P. Baran et al.: Phys. Rev. B Vol. 48 (1993), p.3224.

[11] B.D. Shanina, V.G. Gavriljuk, A.A. Konchitz, S.P. Kolesnik, A.V. Tarasenko: Phys. Stat. Sol. (a) Vol. 149 (1995), p.711.

[12] B.D. Shanina, V.G. Gavriljuk, S.P. Kolesnik, V.N. Shivanyuk: J Physics D: Applied Physics Vol. 32 (1999), p.298.

[13] V.G. Gavriljuk, V.N. Shivanyuk, B.D. Shanina: Acta Mater. Vol. 53 (2005) p.5017.

[14] A.L. Sozinov, A.G. Balanyuk, V.G. Gavriljuk: Acta Mater. Vol. 45 (1997), p.225.

[15] A.L. Sozinov, A.G. Balanyuk, V.G. Gavriljuk: Acta Mater. Vol. 47 (1999), p.927.

[16] B.D. Shanina, V.G. Gavriljuk, A.A. Konchitz, S.P. Kolesnik: J. Phys.: Condensed Matter Vol. 10 (1998), p.1825.

[17] V.G. Gavriljuk, H. Berns: High Nitrogen Steels - 1998, H. Hänninen, S. Hertzman, J. Romu (Eds), Trans Tech Publications Ltd, Switzerland, 1999, p.71.

[18] V.G. Gavriljuk, H. Hanninen, A.V. Tarasenko, K. Ullakko: Scripta Metall. et Mater. Vol. 29 (1993), p.177.

[19] V.G. Gavriljuk, H. Hanninen, S. Yu. Smouk, A.V. Tarasenko, K. Ullakko: Metall. Mater. Trans. Vol. 27A, No. 7, pp.1815-21 (1996).

[20] R.F.A. Jargelius-Pettersson: Z. Metallkd. Vol. 89 (1998), p.177.

[21] V. Gavriljuk, G. Stein, H. Berns: Steel Research Intern . Vol. 74 (2003), p.444.

[22] A.A. Smirnov: Reports of Acad. of Sci. of Ukraine (in Russian) Vol. 7 (1991), p.69.

[23] R.B. McLellan: J. Phys. Chem. Sol.: Vol. 49 (1988), p.1213.

[24] Y. Fukai, N. Okuma: Jpn. J. Appl. Phys. Vol. 32 (1993), p. L1256.

[25] V.G. Gavriljuk, V.N. Bugaev, Yu.N. Petrov, A.V. Tarasenko, B.Z. Yanchitsky: Scripta Mater Vol. 34 (1996), p.903.

[26] M. Kikuchi, T. Tanaka, R. Tanaka: Metall. Trans. Vol. 5 (1974), p.1520.

[27] M. Kikuchi: Proc. University of Tokyo-Harbin Institute of Technology Symposium on Materials Science, Tokyo, May 20-22, 1985, p.22.

[28] V.G. Gavriljuk, V.A. Duz', S.P. Yephimenko: High Nitrogen Steels - 1990, G. Stein and H. Witulski (Eds), Stahl&Eisen, Dusseldorf, Germany, 1990, p.100.

[29] L. Pauling: The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, USA, 1960).

[30] G. Schoeck: Acta Metall. Vol. 11 (1963), p.617.

[31] A. Seeger: Physica Stat. Sol. (a) Vol. 55 (1979), p.457.

[32] V.G. Gavriljuk, Yu.N. Yagodzinski: Phys. of Metals and Metallogr. Vol. 62(iss. 2) (1986), p.38.

[33] D.P. Petarra, D.N. Beshers: Acta Metall. Vol. 15 (1967), p.791.

[34] K. Takita, K. Sakamoto: Scripta Metall. Vol. 10 (1976), p.399.

[35] H.K. Birnbaum: Scripta metall. mater. Vol. 31 (1994), p.149.

[36] J. -O. Nilsson, T. Thorwaldsson: Scand. J. Metallurgy Vol. 15(1985), p.83/89.

[37] R.P. Reed, N.J. Simon: High Nitrogen Steels - 1988, J. Foct, A. Hendry (Eds), Institute of Metals, London, UK, 1989 p.180.

[38] M. Grujicic: Mater. Sci. & Eng. A Vol. 183 (1994), p.223.

[39] M. Grujicic, X.W. Zhou: Mater. Sci. & Eng. A Vol. 190 (1995), p.87.

[40] A. Nyilas, B. Obst, H. Nakajima: High Nitrogen Steels - 1993, V.G. Gavriljuk and V.M. Nadutov (Eds), Institute for Metal Physics, Kiev, Ukraine, 1993, p.339.

[41] A. Seeger: Phil. Mag 46(1955)382, p.1194/217.

[42] V.G. Gavriljuk, A.L. Sozinov, J. Foct, Yu.N. Petrov: Acta Mater. Vol. 46 (1998), p.1157.

[43] N.I. Noskova, V.A. Pavlov, S.A. Nemnonov: Physics Metals Metallogr. (In Russian) Vol. 20 (1965), p.920.

[44] J.D. Defilippi, K.G. Bricker, E.M. Gilbert: TMS AIME Vol. 245 (1968), p.2141.

[45] R.L. Tobler, D.C. Meyn: Metall. Trans. A Vol. 19 (1988), p.626.

[46] D. Teirlinck, F. Zok, J.D. Embury, M.F. Ashby: Acta Metall. Vol. 36 (1988), p.1213.