Receptor-Mediated Gene Delivery Using Chitosan Derivatives In Vitro and In Vivo


Article Preview

The development of an efficient targeted gene delivery system into cells is an important strategy for the advancement of gene therapy. The targeted gene delivery system is especially important in non-viral gene transfer which shows the relative low transfection efficiency. And it also opens the possibility of selective delivery of therapeutic plasmids to specific tissues. Chitosan has been considered to be a good candidate for gene delivery system, since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic potential. However, low specificity and low transfection efficiency of chitosan need to be overcome prior to clinical trial. In this study, we focused on the chemical modification of chitosan for enhancement of cell specificity and transfection efficiency.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




T. H. Kim et al., "Receptor-Mediated Gene Delivery Using Chitosan Derivatives In Vitro and In Vivo", Materials Science Forum, Vols. 539-543, pp. 641-646, 2007

Online since:

March 2007




[1] A. Smith: Annu. Rev. Microbiol. Vol. 49 (1995), p.807.

[2] K. W. Leong, H. -Q. Mao, V.L. Truong-Le, K. Roy, S.M. Walsh and J. T. August: J. Control. Release Vol. 51 (1998), p.183.

[3] K. Y. Lee, I. C. Kwon, Y. H. Kim, W. H. Jo and S. Y. Jeong: J. Control. Release Vol. 51 (1998), p.213.

[4] G. Y. Wu and C. H. Wu: Adv. Drug Deliv. Rev. Vol. 29 (1998), p.243.

[5] G. Ashwell and J. Harford: Ann. Rev. Biochem. Vol. 51 (1982), p.531.

[6] G. Ashwell and A. Morell: Adv. Enzymol. Vol. 41 (1974), p.99.

[7] T. H. Kim, I. K. Park, J.W. Nah, Y.J. Choi and C. S. Cho: Biomaterials Vol. 25 (2004), p.3784.

[8] T. H. Kim, S. I. Kim, T. Akaike and C. S. Cho: J. Control. Release Vol. 105 (2005), p.354.

[9] S. Choksakulnimitr, S. Masuda, H. Tokuda, Y. Takakura and M. Hashida: J. Control. Release Vol. 34 (1995) p.233.

[10] K. Kunath, A. Harpe, D. Fischer and T. Kissel: J. Control. Release Vol. 88 (2003), p.159.

[11] S. Raychaudhuri and K. L. Rock: Nat. Biotechnol. Vol. 16 (1998), p.1025.

[12] C. Foged, A. Sundblad and L. Hovgaard: Pharm. Res. Vol. 19 (2002), p.229.

[13] J. Banchereau and R. M. Steinman: Nature Vol. 392 (1998).

[22] .

[14] R. M. Steinman: Pathol. Biol. Vol. 51 (2003), p.59.

[15] S. Dokka, D. Toledo, X. Shi, J. Ye and Y. Rojanasakul: Int. J. Pharm. Vol. 206 (2000), p.97.

[16] R. M. Steinman and M. Dhodapkar: Int. J. Cancer Vol. 94 (2001), p.459.

[17] F. Liu and L. Huang: J. Control. Release Vol. 78 (2002), p.259.

[18] S. S. Diebold, M. Cotton, E. Wagner and M. Zenke: Adv. Exp. Med. Biol. Vol. 451 (1998), p.449.

[19] W. Jiang, W. J. Swiggard, C. Heufler, M. Peng, A. Mirza, R. M. Steinman and M. C. Nussenzweig: Nature Vol. 375 (1995), p.151.

[20] T. H. Kim, J. W. Nah, M. H. Cho, T. G. Park and C. S. Cho, unpublished data.

[21] A. Maheshwari, S. Han, R. I. Mahato and S. W. Kim: Gene Ther. Vol. 9 (2002), p.1075.

[22] T. H. Kim, H. Jin, H. W. Kim, M. H. Cho and C. S. Cho, unpublished data.