Processing Ti-Al-Nb Composite Sheet Materials Using Cold Roll Bonding and Reaction Annealing


Article Preview

Multi-layered composite sheet materials with nominal composition of Ti-46Al-9Nb (at.%) were successfully processed from Ti, Al and Nb elemental foils using the cold roll bonding technique. To promote the formation of intermetallic compounds in these composites, annealing at 600°C was employed for specimens subjected to various amounts of reduction. The microstructures and phases that formed after cold rolling, the first annealing stage, and the second annealing stage were characterized using scanning electron microscopy (SEM) equipped with an energy dispersive x-ray spectrometer (EDS), transmission electron microscopy (TEM), and x-ray diffraction (XRD). Good bonding was achieved for all rolled samples with a threshold reduction in thickness of about 35% in the first rolling pass. No new phases were formed in the cold rolling stage. Annealing stage did promote the formation of the TiAl3 and NbAl3 phases at the interfaces.



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




V. L. Acoff and R. G. Zhang, "Processing Ti-Al-Nb Composite Sheet Materials Using Cold Roll Bonding and Reaction Annealing", Materials Science Forum, Vols. 539-543, pp. 791-796, 2007

Online since:

March 2007




[1] J. -G. Luo and V.L. Acoff: Gamma Titanium Aluminides (TMS Warrendale PA 1999), p.331.

[2] Y-W. Kim: JOM, Vol. 46 (7) (1994), p.30.

[3] D. E. Alman, C. P. Dogn, J. A. Hawk and J. C. Rawers: Materials Science and Engineering A, Vol. 192193 (1995), p.624.

[4] P. R. Subramanian, M. G. Mendiratta, D. M. Dimiduk and M. A. Stucke: Materials Science and Engineering A, Vol. 239-240, (1997), p.1.

[5] F. Appel and R. Wagner: Materials Science and Engineering, R 22, (1998), p.187.

[6] M. Yamaguchi, H. Inui: Structural Intermetallics, (TMS Warrendale PA 1993), p.127.

[7] R. Wagner, F. Appel, B. Dogan, P.J. Ennis, U. Lorenz, J. Mullauer, H.P. Nicolai, W. Quadakkers, L. Singheiser, W. Smarsly, W. vaidya, K. Wurzwallner: Gamma Titanium Aluminides (TMS Warrendale PA 1995), p.387.

[8] Huiren Jiang, Mitsuji Hirohasi, Yun Lu, Hitoshi Imanari, Scripta Materialia, Vol. 46 (2002), p.639.

DOI: 10.1016/s1359-6462(02)00042-8

[9] M. Yoshihara, K. Miura: Intermetallics, Vol. 3 (1995), p.357.

[10] Patrick L. Martin: Materials Science and Engineering A, Vol. 243 (1998), p.25.

[11] G. Venketaraman, A. G. Jackson, K. R. Teal, and F. H. Froes: Materials Science and Engineering, Vol. 98 (1988), p.257.

[12] Z.C. Liu, J.P. Lin, S.J. Li, G.L. Chen: Intermetallics, Vol. 10 (2002), p.653.

[13] V. L. Acoff and G. Chaudhari: Materials Science Forum, Vol. 426-432 (2003), p.1873.

[14] R. Zhang and V.L. Acoff: Ultrafine Grained Materials III, (TMS Warrendale, PA 2004), p.381.

[15] G. Chaudhari, and V. L. Acoff: Gamma Titanium Aluminides 2003, (TMS Warrendale, PA 2004), p.287.

[16] Heino Sieber: Intermetallics (EUROMAT 1999).

[17] D.J. Goda, N.L. Richards, W.F. Caley and M.C. Chaturvedi: Materials Science and Engineering Vol. A334 (2002), pp.280-290.

[18] K.R. Coffey, K. Barmak, D.A. Rudman and S. Foner: Journal of Applied Physics, Vol. 72 (4) (1992), p.1341.

[19] Y. Im and J.W. Morris, Jr.: Journal of Applied Physics, Vol. 64 (7) (1988), p.3487.

Fetching data from Crossref.
This may take some time to load.