Binder-Free Tungsten Carbide Fabricated by Pulsed Current Sintering


Article Preview

In this presentation, we show some experimental results of binder-free WC with Nano WC sintered by Pulsed Electric Current Sintering (PECS) process also known as Field Assisted Sintering Technology (FAST). The particle size of WC powder is almost 80 nm. These binder-free WC have extremely hardness and stiffness. However, these mechanical properties are dependent on the sintering condition, e.g., maximum temperature, applied presssure, etc. We show some relationship between mechanical properties and sintering condition to improve to sinter the binder-free WC



Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran




K. Shimojima et al., "Binder-Free Tungsten Carbide Fabricated by Pulsed Current Sintering", Materials Science Forum, Vols. 539-543, pp. 907-912, 2007

Online since:

March 2007




[1] E.W. Becker et. al., Microelectrom. Eng. 4 (1986) 35-36.

[2] M. Abraham, W. Ehrfeld, V. Hessel, K. P. Kämper, M. Lacher and A. Picard, Microelectro. Eng. 41/42 (1998) 47-52.

[3] F. Arias, P.J. Kenis, B. Xu, T. Deng, O.J.A. Schueller, G.M. Whitesides, Y. Sugimura and A.G. Evans, J. Mater. Res. 16 (2001) 597-605.

[4] S. Martinoia, M. Bove, M. Tedesco, B. Margesin and M. Grattarola, J. Neurosci. Meth. 87 (1999) 35-44.

[5] E. Makino, T. Mitsuya, and T. Shibata, Sensors Actuators 79 (2000) 251-259.

[6] D. Münchmeyer and J. Langdon, Rev. Sci. Instrum. 63 (1992) 713-721.

[7] A. Ronger, J. Eicher, D. Münchmeyer, R. -P. Peters and J. Mohr, J. Micromech. Microeng. 2 (1992) 133-140.

[8] Y. Saotome, K. Itoh, T. Zhang and A. Inoue, Scripta mater. 41 (2001) 1541-1545.

[9] Y. Saotome, S. Hata, T. Zhang and A. Inoue, Mater. Sci. Eng. A304/306 (2001) 716-720.

[10] Y. Saotome, S. Miwa, T. Zhang and A. Inoue, J. Mater. Process. Tech. 113 (2001) 64-69.

[11] R.L. Seliger, R.L. Kubena, R.D. Olney, J.W. Ward, and V. Wang, J. Vac. Sci. Technol. 16 (1979) 1610-1612.

[12] H. Hosokawa, K. Shimojima, Y. Chino, Y. Yamada, C.E. Wen and M. Mabuchi, J. Mater. Sci. Lett., 21 (2002) 837-839.


[13] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Nature 391, (1998) 667-669.


[14] M.J. Vasile, R. Nassar and J. Xie, J. Vac. Sci. Technol. B 16 (1998) 2499-2505.

[15] J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Nature 412, (2001) 166-169.

[16] G. Carter, J. S. Collingon, and M. J. Nobes, Rad. Effects 31 (1977) 65-87.

[17] R. Cuerno, and A. -L. Barabási, Phys. Rev. Lett. 74 (1995) 4746-4749.

[18] H. Hosokawa, K. Shimojima, M. Mabuchi, M. Kawakami, S. Sano, and O. Terada, Mater. Trans. 43 (2002) 3273.

[19] F. Ericson, and J. -Å. Schweitz, J. Appl. Phys. 68 (1990) 5840-5844.

[20] S. Suzuki, Proceedings of the First Symposium on Spark Plasma Sintering, Sendai, Japan, (1996) 13 (in Japanese).

[21] M. Omori, T. Kakita, A. Okubo et al., J. Jpn Inst. Met. 62 (1998) 986-991.

[22] S.I. Cha, S.H. Hong, Mater. Sci. Eng. A, 351, 25 (2003), 31-38.

[23] K. Shimojima, H. Hosokawa, M. Mabuchi, S. Kawakami, S. Sano, O. Terada, N. Asada, Y. Yamamoto, J. Jpn Soc. Powder and Powder Metallurgy, 50, 11 (2003) 844-847.