Mechanical Properties of the MG-Based Amorphous/Nano Zirconia Composite Alloy

Abstract:

Article Preview

Mg-based composites are fabricated through mechanical alloying (MA) the Mg65Cu20Y10Ag5 amorphous alloy spun and mixed with 1-5 vol.% spherical nano-sized ZrO2 particles in the planetary mill, after then formed by hot pressing in Ar atmosphere under different pressures at the temperature 5 K above the glass transition temperature (Tg). The microstructure characterizations of the resulting specimens are conducted by means of XRD, FEG-SEM, and TEM techniques. It is found that the nano-sized ZrO2 dispersed Mg-based composite alloy powders can reach to a homogeneous size distribution (about 80 nm) after 50-hour mechanical alloying. After hot pressing of these composite alloy powders under the pressure of 1100 MPa at 409K, a 96% dense bulk specimen can be formed. Throughout the MA and hot pressing, the amorphous nature of the Mg65Cu25Y10Ag5 matrix is maintained. The hardness of the formed bulk Mg-based composites (with 3 vol.% nano-sized ZrO2 particles) can reach to 370 in Hv scale. In addition, the toughness of the formed bulk Mg-based composites presents an increasing trend with the content of nano-sized ZrO2 particles and can reach to 8.9 MPa m .

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

925-930

Citation:

L.J. Chang et al., "Mechanical Properties of the MG-Based Amorphous/Nano Zirconia Composite Alloy", Materials Science Forum, Vols. 539-543, pp. 925-930, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] A. Inoue, K. Ohtera, K. Kita, T. Masumoto, Jpn. J. Appl. Phys., 27 (19880 L2248.

[2] A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto, Mater. Trans. JIM, 32 (7) (1991) 609.

[3] A. Inoue, T. Zhang, T. Masumoto, J. Non-Cryst. Solids, 156-158 91993) 473.

[4] T. G. Nieh, J. Wadsworth and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press, Cambridge, UK, 1997, p.261.

[5] M. Mabuchi and K. Higashi, Mater. Trans. JIM, 35, 1994, p.399.

[6] T. Imai, S. Kojima, G. L'Esperance, B. Hong and D. Jiang, Scripta Mater., 35, 1996, p.1199.

[7] B. Q. Ham and K. C. Chan, Scripta Mater., 36, 1997, p.593.

[8] T. G. Nieh, R. Kaibyshev, F. Musin and D. R. Lesuer, Superplasticity and Superplastic Forming, ed. A. K. Ghosh and T. R. Bieler, TMS, Warrendale, PA, 1998, p.137.

[9] A. J. Ardell, Metall. Trans., 16A, 1985, p.2131.

[10] B. Y. Lou, T. D. Wang, J. C. Huang, and T. G. Langdon, Mater. Sci. Forum, 357-359, 2001, p.545.

[11] B. Y. Lou, Ph.D. Thesis, National Sun Yat-Sen University, Taiwan, (1999).

[12] R. Y. Huang, S. C. Chen, and J. C. Huang, Metall. Mater. Trans., vol. 32A, 2001, pp.2575-2584.

[13] T. D. Wang and J. C. Huang, Mater. Trans. JIM, vol. 42, 2001, pp.1781-1789.

[14] J. S. Benjamin, Met. Trans., 1, 1970, p.2943.

[15] J. S. Benjamin and T. E. Volin, Met. Trans., 5, 1974, pp. (1929).

[16] J. W. Martin, Micromechanisms in particle-hardened alloys, Cambridge University Press, Cambridge, p.44, (1980).

Fetching data from Crossref.
This may take some time to load.